ОЧИСТНА СТОЧНыХ ВОД ФЛОТАЦИЕЙ

10578

- Мацнев А. И. Очистка сочяых вод флатацней. Киев, аБудіве.льникх, 1976, стр. 132.
В кенге нэлагаются фнзнко-химнческие основы очисгки сточных вод флотацией, дается класснфикацрия сыпсобов флогационной обработкн сточных вод сособов
осадков.
Привоия
ных сточных тодногнческие схемм очнєтки разлня менқапин по их применешню, конструкции флотокамер и данные для расчетл флотациопных установок; абоб щен ивекщийся н отечественоой н зарубежной праи тине опыт но флотаииоиной обратотте
Қинга рассчитана на ннженерно-технических работ ннков, проектнроөщиков и экеп,луатационников, ра ботающих в области очистки сточных вод, и може быть полезна студентам спепиалыностей вВодоснаб женне и канааизация» и \&Технология очистки при родных и сточных вод»

ани Зиблиография из 114 пози แทน̆.

Редакцня питературы по коммунальному хозяйству

[^0](С) Издательство «Будівельник», 1976

BBEДEHME

При современных темпах и масштабах роста промышленности огромное значение приобретают мероприятия, предотврашаюиие загрязнение воздуха, почыы иоды и способствующие дальнейшему оздоровленню окружаюцей среды. Это строительство водопроводов н каналнзаций, внедрение и разработка новых способов обезвреживання и нейтрализацин промышленных выбросов.

Перед специалистами, занимаюцимися проектированием и строительством канализационных очистных сооружений, стоит большая задача: добиться при снижении стонмостн обработки $1 \mathrm{~m}^{3}$ загрязненных сточных вод такого эффекта очистки, который бы полностью соответствовал требованиям действуюших «Правил охраны поверхностных вод от загрязнения сточными водами». Для этого необходимы разработка новых, более совершенных методов и технопагических схем очи стки сточной жидкости, ннтенсификация работы действуюших очистных сооружений, повышение точности и надежности технологицеских расчетов на основе глубокого теоретического и экспериментального изучения процессов очистки сточных вод.

Флотацня как метод очистки сточных вод от нерастворимых загрязнений и некоторых растворенных вешеств должна найти более широкое распространенне.

В табл. 1 приведены некоторые результаты очистки различных сточных вод флотацией как по даиным автора, так и других исследователей [84]. Флотацией можно очицать также стоки механических и сажевых заводов, красильных фаб́рик или цехов, сточные воды прачсчных и цинковых производств [89,92]

Долгое время этот метод не был широко распространен. В прошлом он успешно использовался в бумажной промышленности, откуда его вытеснили более совершенные установки. Позднее его стаин применять и исследовать в основном на нефтепромысловых и нефтеперерабатывающих предприятиях и там, где сточные воды содержали отходы нефти, продукты ее переработки или смолы.

B последиее десятилетие интерес к практическому использованию этого метода сильно возрос. Исследована и доказана возможность очистки флотацней сточнык вод целого ряда предприятий, таких как заводы

искусственного волокна, кожевенные, механические, мясокомбинаты и др. [34, 35, 39, 50, 69].
При незначитетьном врекиин пребывания сточных вод во флотапиокных устапивках (20-40 мин) обеспечивается весьма высокиї ;рфект очистки сао 90 98%) от верастворимых примесей и вэвешенных веществ. Это иредопредетило иерепективиость метода и возможность его нспользования для очистки сточных вод как промынленных, так и бытовых. Очистка фтотацией сточных вод сопровождается одновременно такими явлениями как аэраиия, сниженнс концеитрацин поверхностно-активных веществ, бактерий и микроорганизмов, что способствует дальнейшей очистке сточных вод, улучшает их общсе санитарное состояние, а иногда может иметь самостоятетьное значение и явиться рсшающим фактором при выборе метода предварительной очистки.

Существенным пренмуществом флотации перед отстаиванием является получение флотационного шлама с более низкой вдажностью (90-95\%), чем влажность осадка, образующегося при отстаивании (95$99,8 \%$). Поэтому шлама получается в $2-10$ раз меньше, чем осадка при отстаиванин.

Рост количества и ассортимента синтетическнх по верхностно-активных веществ, выпускаемых в стране и находящих все большее примененне в промышленности и быту, способствует широкому использованию ф.тотации для очистки стоков. Если раныне, как правило, при флотационной обработке сточных вод приходитось применять такие дорогие реагенты, как смоляной или животиый клей, канифоль, формалин, ксантат, аэрофлот, то сейчас имеются более дешевые и более фло-тационно-активные реагенты, содержание которых как в промышленных, так и в бытовых стоках непрерывно возрастает, в силу чего для многих категорий сточных вод дополнитетьного введения реагентов не требуется.

Возникает необходимость и в понижении содержания СПАВ в сточных водах, обуславливающих всиенивание жидкости в преаэраторах и аэротенках, замедле ние и угнетение биохимических процессов при очнстке

стоков. Спуск синтетическнх детергентов в естественные водоемы регламентируется санитарными и рыбохозяиственными нормами. Многочнсленные исследования по очистке сточных вод от разтдчных синтетических поверхностно-активных веществ укдзывают на весьма незнапитетьное удаление при отстаивании и плохую оипиимическую окистяемость некоторых из них.
В то же время, даже при обычном веденни флотационного процесса может быть достнгнуто заметное снижение концентрации поверхностно-актнвных веществ (на $40-60 \%$ в завнсимости от интенсивности аэрации, пенообразования и концентрации нерастворенных загрязнений). При интенсивной аэрации и обеспечении хорошего вспенивания снижение копцентрации поверх-ностно-активных веществ может достигать $80-90 \%$ $[22,27,38,101]$.
Все это говорит о том, что флотация может и должна найти более шнрокое применение в практике очист. ки сточных вод.
Приводимые ниже схемы и результаты очистки различных сточных вод флотацией могут дать исходный материал для решения вопроса о применении этого метода для очисткн как рассмотренных категорий сточных вод, так и близких по составу, лечь в основу улучшения санитарного состояния водоемов.

ФИЗИКО-ХИМИЧЕСКНЕ ОСНОВЫ ФПОТАЦИОННОГО ПРОЦЕССА
Фпотация явияется сложиым физико-химицеским процессом, который нашел широкое прнменение в обогацении полезных ископаемых.

Гічбокие специальные теоретические изыскания в обпасти ф, потационной очиетки воды ити сточных вод почти не проводились. Перенесение теоретиеских закономерностей флотационного проПеренесение изтики обогащения в практику очистки сточных вод цесса из практики обогаценебходимо учитывать, во-первых, спевполне допустимо, однако неодха сточных вод, во-вторых, принцицифические особенности состава сточных вод, во-вторых, воя Еслит пиально нные задачи, решаемые при очистке стачных вод. Если при обогащении решается задача отделения полезных минералов от пустой породы или разделения минералов, то при очистке сточных вод ставится задача наиболее полного удаления всех нерастворимых примесей и взвешенных веществ.

Извлечение тонкоизмельченных частиц из жидкости, в которой они находятся во взвешенном ити коллоида.тьном состоянин, происходит в результате прилипания частицк пузырькам газа (воздуха), образуюшимся в жидкости илт введенным в нее (пенная духатация *). Прикрепившиеся к пузырькам воздуха частицы флота обо обазу пенный слой с более высокой всплывают на поверхность, ооразуя пенный сой
коицентрацией частиц, чем в нсходной жидкости.
концентрациея восоия в пенном продукте попутно наблюдается и повы-
Кроме того, в пенном продукте попутно наблюдается и повы-
шение концентрации некоторых растворенных веществ и отдельшение концентрации некоторых растворенных веществ и отдель-
ных ионов. В особых случаях обработки сточных вод это может ных ионов. В особых случаях обработки сточных вод это может
рассматриваться как самостоятельная задача, решаемая с помощью флотации
Таким образом, при очистке сточных вод наряду с флотащией в сложной гетерогенной системе, т. е. системе, состоящей из двух или более фаз, может иметь значение и флотация в простой гетерогенной системе, состоящей нз одной фазы. В первом случае из сточной жидкости будут удаляться главным образом нерастворенные частицы и коллоиды совместно с некоторым количеством

$$
\cdots
$$

* В связи с тем, что в последние тоды появился ряд новых терминов, та ких как «ионная флотацняя, «флотация коллоидов» и др., в дае нерастворенных термином жпенная флотащия заляннний, в том числе и коллоидов, а извлечение ионов и молекул растворенных вешеств за счет адсорбции их на поверхности раздела жндкость-газ будем назынать «пенная сепарация».
 активных веществ, во :иром - толвко мшлкуты поверхностноактивыых веществ (в оснонном шнсокомолекулярных) и пекоторые ноны.

При стожном механико-химнческом составе сточной жидкости в зависимости от соотношения концентраций нерастворенных и растворенных флотнрующихяя загрязнений, а также от того, ка-

кие загрязнения мы стремимся в данном случае выделить, мож но представлять рассматриваемый процесс то как пенную флотацию, то как пенную сепарацию. Схематически оба эти случая предетавлены на рис. 1.

Требования к свойствам пенного слоя также несколько различны прн обогащении и очистке сточных вод. Если при обогащении чрезмерная устойчнвость пены нежелательна ввиду характера постедующих операцнй над ней, то при очистке сточных вод желательно иметь более устойчивую пену, чтобы накапливая ее на поверхности получать шлам с меньшей влажностью. Вместе с тем пена должна прочно удерживать всплывающие частицы, не допуская их выпадеєия обратно в жидкость

Қак указано [54], флотационные процессы вообще определяются как процессы молекулярного притипания частиц флотируемого материала к поверхности раздела двух фаз, чаще всего газа и воды, обусловленные нзбытком свободной энергии поверхностных пограничных споев, а также особыми поверхностиыми явлениями смачивания, которые возникают в местах соприкосновения трех фаз (жидкость-газ-твердое тело), т. е. по периметру сма чивания. Прилнпанне частицы, находящейся в жидкости, к поверхности газового пузьрька возможно только тогда, когда нмеет место несмачивание ити плохое смачивание частииы данной жидкостью. Смачивающая сюособность жидкости зависит от ее полярности. С возрастанием полярности способность жидкости смачивать твердые тела уменьшается. Вода смачивает все тела, кроме 8

пекоторых «жирных» органинчких тем алолярных по своей структуре. Виешния пропнлешハм спосабности жидкости к сма чиванию является велнчина поверхностноюо натяжения ее на грачиванию с газом, а также разность полярностей на границе жид

Рис. 2. Различные случаи смачиваияя. Т- тверпсе тело; Г- гаэ; Ж- жидкость; - краевой угол

кость-твердое тело. Чем меньше поверхностное натяжение жидкости и разность полярностей, тем лучше тело смачивается ею. Степень смачивания жидкостьо твердой поверхности (при неполном смачивании) может быть выражена количественно величиной краевого угла смачивания Θ, который, как показано на рис. 2, принято отсчитывать в сторону жидкой фазы.

Этот угол замеряется нанесенной на сухую поверхность каплей воды или пузырьком воздуха, подведенным под помещенную в жидкость поверхность твердого тела

На степень смачивання (или иначе говоря, на силу притипания пузырьков к частицам) оказывает влияние характер взанмодействия между частицей и водай, частицей и растворенным в воде кислородом. Взаимодействие с кислородом может привести к повышению смачиваемости за счет образования окислов, а с диполями воды приводит к образованию гидратной оболочки (толщиной до 0,1 мкм), что также повышает смачиваемость и препятствует закреплению пузырьков. Образование гидратных оболочек возможно в тех случаях, когда энергия связи между самими диполями воды меньше энергии связн между диполями воды п поверхностью твердой частицы. Очень тонкие гидратные оболочки (от 3 до $400 \AA$) не препятствуют закреплению пузырьков [12, 13, 64].

Таким образом, смачивание определяется свойствами жидкости и зависит от свойств твердого тела. По отношению к воде твердые тела могут быть гидрофобными, гидрофильными или занимать какое-то промежуточное положение. К первым относятся вещества, имеющие аполярное строение молекул и в силу этого неспособные гидратироваться. Такие вещества обладают наименьшей смачиваемостью и поэтому легко флотируются. Чем меньше гидратирована частица, тем легче разрывается гидратная оболочка при приближении частицы к лузырьку газа (воздуха),
＂частица прилипает к пузырьку，поскольку такое состояние со い日етствует минимуму свободной энергии системы

Гидрофнтьные вецества с полярным строением мо．текул в во－ де сильно гидратируются，а поятому хорошо смачнваются водой н не могут флотироваться．Вещества с гетерополярным строением

Рис．З．Алсорбция：

 поверинот
дое тело＂．

молекул（лолярно－неполярные）способны гидратироваться со стороны полярной группы．В то же время со стороны углеводо－ роднюй группы они являются гидрофобными и способны слипать－ ся с пузырьками газа．В процессах флотации эти вещества иг－ рают особо важную роль．

Для получения флотационного эффекта в воде требуется пред－ варительная гидрофобизация гидрофильных частиц．Достигает－ ся она путем ввода в жидкость поверхностно－активных реагентов－ собирателей с полярно－неполярными молекулами，которые． адсорбируясь на поверхности гндрофильных частиц，ориентируют－ ся в адсорбционном слое неполярными углеводородными группа－ ми в окружаюшүю среду，делая частицы гидрофобными и созда－ вая тем самым необходимые условия д．ля мх флотацин（рис．3）．

Наиболее распространенные в практике флотации реагенты－со－ биратели могут быть разделены по природе солидофильных групп （групп，закрептяющихся на частичке）на несколько типов，от－ личающихся $ю$ своим ф．тотационным свойствам：

масла и смеси различных соединений，являющихся продукта－ ми переработки нефти，угля，сланцев，дерева（нефть，керосин， мазут，смолы и др．）；

кислоты с углеводородными радикалами（жирные кислоты и ик солі，олеат натрия，нафтеновые кислоты，отеиновая，стеари－ новая и пальмитиновая кислоты и др．）；

соединения，содержацие в полярной части двухвалентную серу （меркалтаны，ксантогенаты，дитиокарбонаты，тритиокарбонаты，丑итиофосфаты и др．）；

соединения，содержащие в полярной части анион серной кисло－ ты（алкилсульфаты，алкилсульфонаты и др．）；
соединения，содержащие в полярной группе азот или фосфор （амины，соли аммония，этаноамин，соли пиридина）
Повышенне гидрофобности и флотируемости материала может осуществляться не топько воздействием реагентов，но и некото－ рыми другими путями，например，сорбцией молекул растворенных газов на поверхности частичек．Такая сорбция должна в той или нной степени уменьшать общую гидратированность поверхности

частичек．（ииіко вслел твие того，что тидратная оболочка те－ ряет снои ральоряющн：свойства［14］и тем больше，чем сият． ней поляризацня воды，диффузия молекул газов к поверхности гипратнрованной частиџы затрчднена．Исследования［20，21］по－ казывают，что активизирующсе пействие растворенных газов на фтотаиио наиболее заметно в присутствии реагентов－собирате－ фий Особую роть при этом играют пчзнрьки воздуха，выделяю－ щиеся из раствора（при есо пресыщении возлухом）на поверхнос－ ти частички．Эти мнкропузырьки в какой－то степени дегидрати－ руют ее，способствуя притипанию более крупного пуаырька н флотации частицы．При небольних размерах частицы могут фло－ тироваться и за счет образовавшихся на них микропузыриков．

Теоретические и экспериментатьные данные［20，21］показыва－ ют что пузырьки，возникаюыне из пресышенного раствора，об－ разуются игновенно и преимущественно на лодготовленных $к$ флотацни частицах，а не спонтанно，поскольку работа，затрачи－ вяеная на образование спонтанного пчзырька，больше затрачи－ ваенй на образование гакого же пчзырька на твердой поверх－ ности．Вероятность образования пузырька на поверхности частин тем выше，чем тучие они подготовлены к флотации．
Пузырьки，образующиеся на твердой поверхности，тем мельче．
 величины всего в несколько микрон，затем уветичиваются за счет коалесцениии друг с другом или с пузырьками，возникши－ ми спонтанно．Это имеет существенное значенне при выборе спо－ соба флотации，указывая на определенные преимущества флота－ ции при выделении воздуха из раствора．
В лрактике очистки сточных вод часто приходится иметь дело с флотацией хлопьев скоагулированных коллоидов，коагулянтов и гитроокисей металлов Вероятность прилипания пузырьков га－ за к хлопьям и прочность сцепления их между собой тем выше， чем меньше времени прошло с момента образования хлопьев．

Наши наблюдения показывают，что षфлотационная актив ность» хлопьев по мере их «старения» заметно падает，а спустя несколько часов они вовсе могут потерять способность флотиро－ ваться．Наилучшими с точки зрения флотапии хтопьев коагули－ рованных коллоидов и гидроокисей являются условия，когда про－ цессы выделения пузырьков газа из раствора и образования хлопьев происходят одновременно，что имеет место，например． три электрокоагуляции－флотании．
Исследованиями установлено，что размер нужных для флота ции пузырьков увеличивается с увеличением размера частиц при их одинаковой гидрофобности，т．е．прилипание частиц малого размера соответственно к пузырькам малого размера более веро ятно，чем к пузырькам большого размера［4］．В условиях пони－ женной гидрофобности вообще более вероятным будет прилипа ние мелких пузырьков．При увеличении размера частиц，а также при понижении их гидрофобности создаются условня，благопрн－
 pogncinyat.

Большое знамぃルе дл: флотационного процес:я имеет образование пузырькои опреп" "нной крупности и их мхранение (стабилизация). Последнеє юостигается лутем ввода : жидкость ре-агентов-пенообразователей, повышаюиии диспетность пузырьков и спюсобствчюшик их устойчивости. Пеноопиазователи адсорбирчютсл на поверхности раздела жидкост, газ, понижая поверхностнюе натяжение жидкости на нем. Поля: 1 ая часть реаповерхностнюе натяжение жидкости на пем. Полжлая часть реа-
гента-собирателя реагирует с молекулами вол: a аполярная гента-собирателя реагирует с молекулами вол
часть ориентируется в газовую фазу (см. рис, 3).

Концентрируясь на поверхности раздела жидкость—газ, вепениватель уменьшает поверхностную энергию раздела фаз, способствуя тем самым, с одной стороны, стабилизации пузырьков, а с другой, - улучшая процесс притилання к пузьрькам твер,дых частиц.

K пенообразователям относятся сосновое масто (или тяжедый пиридин), креозол, ксиленол, фенолы и некоторые синтетические моющие вещества - аткитсульфонат алкнларнлсчльфонат ал. килсульфат натрия (моющее средство «Прогресс») п ір.

Многие флотореагенты, особенно синтетические, обладают и собиратетьными, и вспенивающими свойствами
Имеется еще одна группа флотореагентон-регуляторов, активизирующих или подавляющих фнотацию того или иного вещества (известь, сода, серная кислота, сернистый натрий, медный и цинковый купорос и др.). В практике очнстки сточных вод нх специальное применение (за исключением создания определенной pH среды, имеюшей в ряде случаев значение для флотации) вряд ли может иметь место. Однако следует учитывать, что иногда возможно ухудшение эффекта флотации опредетенного ингредиента (загрязнения) в сточных водах из-за присутствия реа-гента-подавите.тя.

Процесс прилипания частиц загрязнения к пузырькам воздуха является основиым актом фпотации, а одной частицы к пузырьку - элементарным актом флотации.

Прилипание загрязнений к пузырькам происходит двумя путями: при столкновении частицы с пузырьком и при возникновении пузырька из раствора на поверхности частицы.

На основании термодинамического и кинетического анализов процессов присипания [7] можно сделать выводы, что чем гидрофобнее поверхность частички, тем вероятнее ее прилипание к воздушному пузырьку при их столкновении; сипа столкновения и воздушному кокта могут быть тем меньше, чем ғидрофобнее частивремя контакта могут оыть тем меньше, чем гидрофобнее части-
ца и чем гидрофобнсе ее поверхность, тем вероятнее образование ца и чем гидрофобнсе ее поверхность, тем вероятнее
на ней пузырьков газов, выделяююихся из раствора.

Это еще раз подчеркивает необходимость тщательной подготовки (гидрофобизации) частиц загрязнений перед флотацией их.

При очистке сточных вод приходится иметь дело преимуще-

 цин) будет происходить фтокутяция их путем сцепления аполярных групп реагентов, находящихся на поверхности частиц, фтоку-
 Для укрупнения частиц целесообразно применять коагуляцню, особенно в тех случаях, когда наряду с мелиии частицами надо сфлотировать и более крупные, Флотация которых в трисутствни шламов будет ухудшаться

Созданне во всем объеме жи!шости, где взвешенные вещества находятся в мелкоднсперсном іостоянии, воздушнюй эмульсии является необходимым усповием кяя услешного прилипания частиц к пузырькам воздуха. Прн этом значительный пицент частичек флотируется за счет пулырьков воздука, вы целившися непосредственно на их поверхности, остальные - ппсредством слипания с пуаырькамн воздуха, выделнвшимися или !я поверхности пругих частичек, нли спонтанно. В стесненнок состоянии воздушно-водяной эмульсии этот процесс протекает весьма интенсивно.
Тонкие шламовые частицы, если они достаточно флотоактивны, покрывают тонким слоем поверхность воздушных пузырьков, образуя своеобразные шнамовые зерна, более крупные к таким зернам прилипают ллохо. Наружные обкладки пузырьков способствуют их устойчивости, прочности и продолжительности существования пенного слоя, что при очистке сточных вод имеет существенное значение, так как позволяет получать пенный продукт (шлам) с более низкой влажностью за счет накопления его в течение некоторого времени на поверхности жидкости.

Пены, получающиеся при флотации, могчт иметь различное строение - агрегатное, пленочное ити пленочно-структурное. При флотации сточных вод наиболее вероятно образованне пленочноструктурных пен, которые содержат большое каличество воды. особенно в нижних слоях, а устойчивость и подвижность их изменяется в зависимости от колдчества флотореагентов и характера загрязнений, выносимых в пенный слой.

При подъеме шламовых зерен в пенный слой начинаются процессы флокуляции, т. е. агрегирование отдельных минерализованных пузырьков в аэрофлокулы н нх коалесценция, в результате чего образуются крупные шламовые агрегаты (диаметром 2-3 мм) из мелких пузырьков е палипшими на них частицами взвесей. Соприкасаясь вплотную своими наружными обкладками. агрегаты постеленно слипаются друг с другом, одновременно стремясь подняться вверх в силу своей плавучести. Находящаяся в просветах вода стекает вниз, уменьшая тем самым обшую влажность шлама. Шлам после полного объединения зерен представтяет собой одну сплошную массу с включенными в нее пузырь-

ками воздуха или других : азов. герез 5-10 ч наконления шлама содержание в нем тверыно вещества уветичиваетея в $1-2 \%$ до $6-10 \%$, пузырькн воздуха занимают 20 - 30% общего объема. Следует отметить, что шлам по достижении им влажности окодо 90% в дальнейшем уплотняется и обезвоживается значнтельно меллснгее так как прослоики воды, заключенные между частицами, имеют толшину, исчисляемую несколькими микронами, и, как показали исстедования [12], теряют обычные гндравлические свойства, что затрудняет стекание воды. Кроме того, в шлаMax сточных вод содержится значительный процент коллондальных частиц, которые легко гидратируются, ио воду отдают плохо.
На устойчивость пен влияют молекулы реагентов-пенообразователей и частицы флотируемых материалов. Нанлучшим образом стабилизируют пену поверхностно-активные вещества, образующие в воде коллоидные н попуколлоидные растворы (сапонин и др.).

Реагенты, образующие истннные растворы (низшие спирты, скипидары и др.), н те, которые практически нерастворимы в воде (веросин и др.), при больших дозах резко уменьшают устойчивость пен.
Стабилизируюшее действне сфлотированных частиц тем выше, чем более они гидрофобны, мельче и чем больше нх форма приближается к плоской, чешуичатой. Присутствие реагента, уменьшающего снлу прилипания частиц к пузырькам, будет отрицательно сказываться и на устойчивости пены.

Таким образом, кинетику флотацнонного процесса характеризуют следующие факторы:

сила прилипания пузырька к частице, определяемая велнчиной краевого угла и размерами пузырька;
кинетика разрыва промежуточной жидкой прослойки, приводящей к образованию тонкой пленки, отличной по своим свойствам от жидкости в объеме;

размер частиц;
сорбция газов на поверхности частиц и химнческое взаимодействие тазов (в частности, кислорода) с частицами;

изменение величины краевого угла с течением времени;
влияние реагентов на величину краевого угла и на устойчивость пузырьков и флотацнонных пен;
условия зарождения и образования пузырьков на границе раздела жидкость - твердое тело за счет выделения растворенных газов;

механизм минерализации пузырьков в загрязненной воде и пенном слое.
Из-за многообразия факторов, определяющих течение флотационного пропесса, трудно руководствоваться только теоретическими предпосылками в выборе вероятного режима и эффекта флотационной очистки сточных вод. В каждом отдельном случае необходима экспериментальная проверка флотируемости загряз-

нений, солюжащихея в сточных водах, в лабораторных устовнях нин на небліных полупронзводетвенных установках (ниже приводятся некоторые их схемы). Такие исследования позволяют выявить некоторые закономерности очистки сточных вод флотацией, учет которых необходим для создания условий, обеспечиваощих полноту н высокую скорость иэъятия загрязненнй из сточных вод.

Рис. 4. Графики зависимости удельного растода воздуха дйагрузки

Количество воздуха, подаваемого на флотацию в виде мелких пузырьков, является одним из условнй, обеспечиваюцих успех пузырьков, являетаток или нзбыток его снижают зффект данного флотации: недостаток или избыток его снижают зффект данного
процесса. На рис. 4 представлен график, показывающий связь процесса. На рис. 4 представлен график, показывающии связь
между концентрацией перастворенных прнмесей и удельным расмежду концентрацией перастворенных прнмесей и удельным рас-
ходом воздуха, количеством воздуха в \hat{r}, отнесенным к 1 ка изходом воздуха, количеством воздуха в \bumpeq, отнесенным к 1 ка извлекаемых загрязнений, необходимым для достижения максимально возможного эффекта флотации при очистке данного внда
сточных вод. Как видно из графика, удельный расход снижается с возрастанием концентрации нерастворенных загрязнений, что вполне объяснимо, если рассмотреть вероятность столкновения и закрепления пузырьков и частиц как функцию их количества в единице объема Спедует отметить что приведенные удепь-
 ные расходы в несколько раз пов найденное из условий создания необходимой для всплывания плотности твердовоздушной фазы ($1-1,6 \pi / \kappa z$). Следовательно, пекоторый избыток воздуха необходим. При очистке сточных вод в большинстве случаев стремятся к длитегьному накоплению шлама на поверхности, поэтому возможно возникновение явлеиий, ухудшающих эффект флотации: избыток подаваемого воз-

уха 凸.:иинается под слюем ппотного шлама: нижияя граница соплелия воздушных пузырьков опускается, достигает областн тидрав.тических воэмущений, создаваемой впускными устройствами, и начинается интенсивный вынос пүзырьков и частиц с осветленной водой. Такое явление может возникнуть прн очистке сточных вод с нонцентрацией взвесей выше 2,5-3 2, л. т. е. при содержании воздуха выше 40-45 $\lambda \pi^{3}$. Во избежание этого сле дет ограничить высоту споя накапливаемого шпама (не ботее -5 м) и нагруаку по сухому веществу, прнходящуюся на 1 м 2 поверхности водного зеркала флотационной камеры, т. е. между верхности водного зеркала коччй глџбиной должно быть строго площадыо камеры и ее рабочеи гыуоиой должно от качеста очищаемой определтнное соотношение, зависящее от качесть допустимых жидкости. На рис. 4 дан также график максимально допустим манагрузок по сухому веществу в кг; \boldsymbol{c}^{2} при рабочеи глубине камеры 1 м. Прн увеличении рабочей плубины максимально допустимые нагрузки будут возрастать прямо пропорционально воз
 на минимально попустимая продолжительов Так, при флотации стокки высококонцентрир слотации должна быть не менее 45 мин; при 4-7 а/л - не мене флотацин должна быть не менее
30 и при $32 / \Omega$ - не менее 20 мин.
30 и при 3 г/ - - не менее 20 мин. его объема во времени позволяет получить ряд расчетных данего объема во времени позволия неоходиы для проектиования и конструирования флоных, необходимых для проектирования и коплени шлама на поверхности и его объем к моменту уборки, влажность шлама н др

Рис. 5. График уплотнения флотадиРис. 5. График уплотнния На основании анализа графи ков уплотнения шламов, образующихся при флотацин мел. кими пузырьками различных сточных вод, можно установить некоторые общие закономерности и составить обобщенный график (рис. 5). Наиболее интенсивное уплотнение происходнт в первые два часа, затем процесс замедляется и после четырех часов идет совсем мед* ленно. За единицу на графике принят объем шлама к моменту, когда все пузырьки воздуха поднялись в пенный слой, что в протачных установках соответствует расчетной продолжительности флотации, т. е. в среднем 30 мин. При номощи этого графика выведены формулы, позволяющие определить объем шлама накопившегося к любому моменту (в пределах 8 ч), после начала работы установки или после его сороса.
 и продолжительность накопления $t_{10}, \psi_{\text {, определяем по формулам: }}$ о

$$
\begin{align*}
& t_{\mathrm{t} 1}=\frac{B_{0,5}\left(100-\rho_{\mathrm{cf}}\right\}-B_{t}, 0,81\left\{100-\beta_{0,6}\right\}}{0,4 B_{i}\left(100-\rho_{0,5}\right\}} ; \tag{2}
\end{align*}
$$

цри накопленни шлама более 4 я

$$
\begin{align*}
& \frac{1,8 B_{2.5}\left(100-p_{c 6 g}\right)}{\left.-p_{0,2}\right)-0,4 B_{0.5}\left(100-p_{c \operatorname{cop}}\right)}, \tag{3}
\end{align*}
$$

где $\quad C$ - расчетная концентрация взвешенных веществ, мс $/ \lambda$;
$Э$ - Эффект извлечення взвешенних веществ в долях единицы;
Qcя.ч - средний часовой расход сточных вод, $\mu^{3} / \boldsymbol{q}_{;}$
$p_{0,5}$ - влажность шлама после получасового накопления в зависимости от расчетной концентрашии взвешенных веществ:

$\begin{array}{ccccccccc}0.5 & 1,0 & 2,3 & 3,0 \\ 98,5 & 98,25 & 97,75 & 97,25 & 96,75 & 96,5 & 96,0 & 95,5 & 9,0 \\ 95,0 \\ 96,0\end{array}$
$p_{\text {сор - влажность шлама к расчетному моменту, составляю- }}$ щему 94%;
$B_{0,5}, B_{1}-$ коэффициент увеличения объема плама за счет содержащегося в неч воэдуха после попучасового накопле ния $(1,55)$ и к расчетному моменту (прн $t<3$ и $B_{t}=1,25 \%$, при $t_{\text {tu }}>3$ ч $\left.B_{t}=1,2 \%\right)$;
$\boldsymbol{\gamma}$ - объемный вес сухого вещества, іллама, т/м쏘
Предлагаемье формуты позвопяют с достаточной точностью $(\pm 2,5 \%)$ определить объем шлаиа и продолжительность его на копления. Зиачение влажности сбрасываемого шлама ($p_{\text {сбр }}=$ $=94 \%$) принято из устовнй возможности гитравлической транс портировки его на дальнейшую обработку. Если значение $t_{\text {пи }}$, оп редетенное по формуле (2), окажется больше 4 и, то пужно поль зоваться второй груптой формул. При вычислении $t_{\text {: }}$ по формуле (4) значение его может оказаться слишком большим илね от рицательньт Это говорит о том, что получить шлам с желаеиой средней виажностью невозможно, и необходичо предусмат ривать сброс тотько верхних, наиболее обезвоженных слоев.

$$
\varepsilon
$$

-1514

МЕТОДЫ ФЛОТАЦИОННОЙ ОБРАБОТКИ

 сточных вод
Класеификация єпособов флотационной обработки

Практикой оч, тии сточных вод к других загряэненных жидкостей флоташин, а также экспериментальными исследованиями выработаны ра . нные конструктивные схемы, приемы и методы, отичаюшиеся днуг от друга рядом признакон.

Следует выделить пенную флотацию, пенную сепарацию, плеСледует выделить пенную флотацию, пенную сепарацию, пле-
ночную н маслную фнотации. Два последних вида при очнстке сточных вод практически не применяются. Пеннан фиотация может применяться как для извлечеиия взвешенных и нерастворенных веществ, так и для сннженин концентрации некоторьх растворенных загрязнений, а пенная сепарация - для Эдаления растворенных веществ, что обусловит в том или нном случае определенный технологический режим процесса и соответствующее его конструктивное оформление. Но поскольку в реальных үслоиях будут иметь место, как правило обд процесса, то четко развиях будут иметь место, как правь методы флотацин по этому признаку трудно.
Различные приемы фпотации отличаются также конструктив ным оформлением установок и слособом разделения жидкой и всплывающих фаз. Так, флотационные камеры могут состояти ия одного или из двух (приемная и отстойная части) отделений. В однокамерных установках в одном н том же отделенин происходит одновременно насыцение жидкости пузырьками воздуха 7 всптывание флотирующихся загрязнений; в двухкамерных - в приемной части образуются пузырькн и слипаются с нерастворен ными частицами, в отстойной - всплывает шлам (пена) и жидкость осветляется Под продолжительностью флотации во втором пучае часто понимают продолжнтетьность отстаивания необ
 ходимую для достижения желаемого эффекта очистки. Существуот также многокамерные флотационные установки (см. рис. 30)
Кроме того, встречаются различные способы подачи воды на
флоташию, применяются различные флотореагенты и др.
Наиболее существенные принципиальные отличия способов флоташии, применяемых для очистки сточных вод, связаны с насыщением жидкости пузырьками воздуха или газа желаемой крупности, поэтому и классифицировать их удоонее именно по тому признаку. Можно выделить следующие способы флотацнонной об́работки сточных вод:

флотация с выделением воздуха из раствора - вакуумные, напорные и эрлифтные установки;
флотация с механическим днспергнрованием воздуха - импеллерные, безнапорные и пневматические установки;
флотация с подачей воздуха через пористые материалы; элек-
трофлотация; биологическая и химическая флотации.
Ннже подробно рассматриваются перечисленные приемы флотационной обработки сточных вод.

Флотация с выделеннен воздуха из раствора

Этот способ довольно широко применяется в практикс очнстки сточных вод, содержащих очень мепкие частнцы загрязнении,
 Суцность его заклюпается в создании пересыщенного раствора воздуха в сточной жидкости. Выделяющнйся из такого раствора воздух образует микропузырьки, которые и флотируют содержащиеся в сточнои жидкости загрязнения
В зависимости от того, как создается пересыщеннын раствор воздуха в воде, рассматриваемый слосаб фиотацию можно под разделить на вакуумную, напорнчю или эрлифтную. Последняя в той нли иной мере может быть отнесена также н к слособу фло тации с механическим диспергированием воздуха, поскольку мел кие пузырьки воздуха при этом образуютея двояким путем.
Минимальные размеры пузырьков воздуха при некотором до пущении могут быть определены на основанни закона Генри

$$
\begin{equation*}
P_{\mathrm{n}}=k C \tag{5}
\end{equation*}
$$

де $P_{\text {д }}$ - парциадьное давление воздуха в пузырьке;
k^{2}--- константа Генри, зависящая от свойств газа и его температуры;
C -- концентрация растворенного воздуха вокруг пузырька Давленне в пузырьке также равно

$$
\begin{equation*}
P_{\mathrm{n}}=P_{\mathrm{cp}}+\frac{2 \sigma_{\Gamma . 火}}{R_{\mathrm{M} 1 \mathrm{KH}}} \tag{6}
\end{equation*}
$$

где $P_{c p}$ - давление в среде, окружающей пузырек;
$\sigma_{\text {гж }}$ - поверхностное натяжение на границе газ-жидкость
$R_{\text {мин }}$ - радиус пузырька
H_{3} (5) и (6) получим

$$
\begin{equation*}
R_{\mathrm{maH}}=\frac{2 \mathrm{a}_{\mathrm{r} . \mathrm{H}}}{k C-P_{\mathrm{cp}}} \tag{7}
\end{equation*}
$$

но $P_{c p}$ также характеризуется некоторым $k C_{1}$. Тогда

$$
\begin{equation*}
R_{\mathrm{MXH}}=\frac{2 \sigma_{\text {r. ж }}}{k\left(C-C_{1}\right)}, \tag{8}
\end{equation*}
$$

где $C-C_{1}$ определяет величину пересыщения раствора. Это уравнение при условии начальной насыщенностн раствора можно представить в виде

$$
\begin{equation*}
R_{\text {мин }}=\frac{2 \sigma_{\mathrm{r}, 火}}{P-P_{1}}, \tag{9}
\end{equation*}
$$

где $P_{-} P_{1}$ - перепад давлений
Из приведенных уравненнй видно, что для образования мелких пузырьков следует понизить поверхностное натяжение на границе вода-воздух ($\sigma_{\mathrm{r}, \text { ж }}$) и увеличить перепад давления P - $P_{\mathbf{1}}$ или величину пересыщения $C-C_{1}$.

Количество воздуха, которое , жио выделиться из тересы щенного раствора для обеспечени: необходимого эффекта фтотацни, можно определить экслернментально; обычно оно состав ляет 1-0 от объема воды. Прн этож определяется либо вели чина разрежения (при вакуумной фтотации). "тиб начальное давление (при напорной флотации). Қолнчество воздуха в случае напорной флотации можно подсчитать по формуте

$$
\begin{equation*}
\left.y=(P-1) b-1 P b-b_{\mathrm{a}}\right) e^{-k \tau t} \tag{10}
\end{equation*}
$$

где \quad - концентрация воздуха, соответствуюцая голному насы щению при данной теипературе и атмосферном давленни, ме/л;
$b_{\text {a }}$-- растворимость азота в воде при данной температуре и атмосферном давлении, мс/л (b и $b_{\text {а м могут быть опре- }}$ делены по графику на рис. 6);
$k_{\text {т }}$ - константа скорости растворения газа в воде, $1 /$ мин,

$$
\begin{equation*}
k_{T}=k_{2,} \frac{b_{3 D}}{b_{T}} \tag{11}
\end{equation*}
$$

где k_{20} - по данным П. А. Базякиной равняется 0,35;
t - продолжительность насыщения жидкости воздухом, мин. Поскольку растворимость газа в воде зависит от температуры, которая в сточных водах не регулируется, продопжительности насыщения, то определять нужный перепад давлений следует при определенной продолжительности насыщения t (обычно t составляет $0, \overline{5}-2$ мин). В дальнейшем при подборе насосов и оборудования давленне и продолжительность насыщения могут быть в случае необходимости изменены в соответствии с формулами

Рис 6 График зависимости рас творимости воздуха, кислорода и азота в воде от температуры: 1 - воздух; 2 - ампт; 3 -кнелород

$$
\begin{equation*}
P=\frac{y+b-b_{0} e^{-k} T^{t}}{b\left(1-e^{-k} T^{t}\right)} \tag{12}
\end{equation*}
$$

н.ли
$t=\frac{\lg \left(P b-b_{\mathrm{n}}\right)-\lg [(P-1) b-y]}{0,434 k_{\mathrm{T}}}$
Вакуумиые установки. Преимуществами вакуумной флотации перед другими способами насыщення сточных вод воздухом является то, что образование пузырьков газа, их слипание с частицами загрязнений и всплывание агрегатов пузырек - частица происходит в пузырек - частица пойной среде, вероятность обратного процесса (разрушения агрегатов) сводится к минимуму, и затраты энергии на насыщение жидкости воздухом, на образование и измельчение пузырьков, т. е. на весь процесс флотации минимальны.
K числу недостатков следует отнести незначительную и огра-

ниченную степень насыщения цтоков пузырькамн газа, что сужа ет диапазон прнменения вакуучнои фпттаини и не позво.тяет применять ее для жимостей со сравнительно высокой концентрацией (более $250-300$ на/л) нерастворенньіх загрлзнений, способных (оолее $250-300$
Вторым недостатком явняется необходимость сооруження гер метически закрытых резервуаров, в которых можно осзщестн-

Рис. 7. Схема вакуумного флотатора:

лять частичный вакуум, с размещением внутри них скребковых механизмов, что солряжено с определенными конструктивными $и$, главное, эксілуатационными трудностями. Любой, даже очень мелкий, ремонт и осмотр механической части невозможен без полного выключения флотационной камеры нз работы.

Вакуумная флотационная установка, предназначенная для предварительной очистки бытовых сточных вод, представлена на рис. 7 и описана в работах $[86,98,99]$.
рнс. 7 и описана в работах Представляет она собой герметический резервуар диаметром 10,5 м и высотой $3,6 \mathrm{~m}$ (глубнна воды $3,1 \mathrm{~m}$) с купольным перекрытием. Под дницем резервуара имеется технологическое помещение, где размещаются подающие и отводящие трубы, шла-мо- и грязеприемник, насосы для откачки шлама и осадка и пульт управления. Сточная жидкость, поступающая на флотацию, предварительно насыщается воздухом в течение 1 - 2 мин в аэрационной камере механическим аэратором. Мэйс [99], исследовавший различные способы насыщения стоков воздухом перед вакуумной флотацией, нашел, что наилучшим, а соответственно, и более эф-

фективным является метод, когда в аэрационную камеру воз-душно-водяная эмульсия подается насосом. Vз камеры аэрацин сточные воды перепиваются в деаэратор длл удаления нерастворившегося воздуха.

Затем под деиствием разрежения сточные воды поднимаются во флотационную камеру, где оказываются под пониженным даятеннем. Растворившийся прн атмосферном давтении воздух выделяется в виде микропузырьков и выносит часть загрязнений в пенный слой. Скапливающаяся пена вращающимися скребками отводится в пеносборник, а оттуда - в грязеприемник. Кроме поотводится в пеносоорник, а оттуда - в грязеприемник. Кроме по-
верхностных, флотационная камера оборудована еще донными верхностных, флотационная камера оборудована еще донными
скревками для удаления осадка, выпавшего на дно. Осветленная скребками для удаления осадка, выпавшего на дно. Осветленная
вода собнрается кольдевым желобом, отделенным от камеры дырчатой перегородкой из листовой стали, и направляется на цамьнейшую обработку.

Разрежение во флотационной камере составляет 225 - 300 мм рт. ст. и первоначально создается вакуум-насосом, который в дальнейшем может работать непрерывио или периодически, откачивая сравнительно небольшое количество газа, выделяющегося во флотационной камере. Чтобы осветленная вода мопла вытекать из реэервуара с пониженным по сравненню с атмосферным кать из резервуара с пониженным по срининия следует, чтобы разность геодезических отметок уровдавлением, следует, чтобы разность геодезических отметок уровней воды во флотационной камере и сооруженин, куда поступает
осветленная вода, быта больше величины разрежения, выраженной в метрах водяного столба (желательная разность отметок 8- 10 м). В противном случае необходимо устанавливать насосы для откачки осветленной жидкости из флотационной камеры. Поэтому использование вакуумной флотации ограничено, а более целесообразна напорная илн безнапорная флотация.

Продолжитетьность пребывания сточной жидкости в камере флотации около 20 мин. Средняя нагрузка на 1 м 2 водного зеркала составляет около $220 \mathrm{~m}^{3} / с$ ст .

На рис. 8 представлена вакуумная флотационная үстановка конструкции Савалла-Штоффэнгер [88].

Флотационная камера выполнена в виде горизонтального от стойника с понижением днища к месту выпуска осветленной жидкости и шлама. Предварительное насыщение сточной жидкости воздухом осуществляется воздушным эжектором. Скребки для сгребаиия пены отсутствуют. Движение всплывшего шлама к отводящему лотку происходит за счет горизонтального перемещения жидкости на поверхности, создаваемого конструкциеи выпуска и принудительным отсосом шлама из сборного лотка специальным насосом, действием которого одновременно поддерживается разрежение в камере. Для того чтобы налипание шлама на стенки не препятствовало его продвижению к сборному лотку, на стенки не препятствовало его продвижению к сборному лотку,
камера оборудована трубопроводами с отверстнями. Через них камера оборудована трубопроводами с отверстнями. Через них некоторое количество сточной ж
вяет налипающис загрязнения.

Эта конструкция проще, чем предыдчщам, н может применяться, если образующийся на поверкности Шлащ легок и лодвнжен. Размеры и ироизводительность одной такой камеры ограннчи ваются горизонтальной протяженностью пути, по которому штам может перемещаться без помощн скребков.

Рис. 8. Схема вакуумного флотатора тнпа *СаваллаIUтоффэнтер».

Напорнве установки. Напорная флотация обладает более широкими возможностями при очистке сточных вод, पем вакуумная, хотя последняя несомненно экономичнее, так как позволяет в более широкик пределах регулировать степень пересыщения и подбирать ее в соответствни с жепаемым эффектом

Рис. 9. Схема напорной флотации:
 непорнй бак;
поверхностные скребки.

флотации. Этим способом можно очицать стоки с концентрацией взвесей до $4,0-5,0$ 2/л и более. ГГри напорной флотации (схема на рис. 9) сточные воды во флотационную камеру подаются насосом, который также насышает жидкость воздухом.

Из приеме: $: о$ резервуара сточные воды забираются насосом и перекачиван. ¢ через нанорый резервуар в прнемное отделенне флотационной камеры. На всасывакюием трубопроводе насоса нмеется патрубок для подсоса воздуха. Воздух, поступив через насос в напорный резервуар, в резуа :іте повышения давления растворается в жидкости. Объем налыртого резервуара рассчитывается на необходимую продолжительность насыщения (от 0,5 до 5 мин). Если насосы расположены далеко от фтотационной камеры, что характерно для сооружении большон производнтельности, необходимая продолжителыность пасыщения стоков воздухом может быть обеспечена в напорных трубопроводах, тогда устройство напорного бака излишне. Вообще, для сокращения объема бака следует учитывать время пребывания сточных вод в напорном трубопроводе.

Для разлнчных случаев очистки насос создает давление от 1,5 но 4 ати и выше, чаще всего $2-3$ ати. Прн таком давлении и температуре стоков $20-25^{\circ} \mathrm{C}$ растворяется от 30 до $50 ~ а$ воздуха на I м 3 жидкости. Этого количества воздуха достаточно, чтообы посgе резкого сннжения давления в приемной части флотационной камеры образовалась воздушно-водяная эмульсия за счет выделившихся из раствора микропузырьков, которые прилипая к частичкам взвеси и других нерастворенных, способных фтотироваться, примесей, вынесут большинство их в пенный слой

Собирающаяся на поверхности флотационной камери пена (шлам) скребковым транспортером сгоняется к шламоотводящему лотку. Осветленная вода удаляется из нижней части камеры. Ести количество воздуха, пропускаемое через насос, превышает $2-3 \%$ от количества перекачиваемой жидкости, то это отрицательно сказывается на работе насоса. В таком случае впуск воздуха в сточную жидкость осуществляется воздушным эжекторои, устаповленным либо на напорном трубопроводе, либо на перемычке, соединяющей напорный трубопровод со всасывающим. Нспользуют эти схемы даже в тех случаях, котда насос работает на предельной высоте всасывания или под заливом. Следует отметить, что впуск воздуха во всасывающий трубопровод непосредственно или через эжектор ускорит время его растворения по сравнению с расчетным по формулам (I2), (13), что объясняется диспергирующим действием вихревых потоков, создаваемых рабочим колесом центробежного насоса

Существенное влияние на режим подачи воздуха в насос, а следовательно, на его устойчивую работу и долговечность оказывает изменение вакуумметрической высоты всасывания, вызванное колебаниями уровня воды в приемном резервуаре. Эти колебания бывают настолько значительными, что могут вызвать срыв вакуума и остановку насоса. Поэтому, если колебания уровня воды в приемном резервуаре превышают 1 м, то рекомендуется автоматическое регулирование подачи воздуха в насос в зависимости от уровня воды в приемном резервуаре.

Сами флотационные каиеры могут быть различных конструкций. Флотационная ловушка нтемы Свсн-Пендерсена, применявшаяся для очистки стоков бумажной промыштенности, поканявшаяся для очистки стокон бумажной промышытености, пока-
зана на рис. 10, а фпотацмоншые камеры системы яэрофлтор» и «Вопьф-Шиимштоффэнгер» - на рис. 11, 12 [88].

Рис. 10. Схема флотационной тозушки Свен-Пендерсена:

Схемы подачи воды во флотационную камеру (рис. 13, a, б) могут отличаться от приведенной на рис. 9, где перекачке под давлением подвергается вся сточная жидкость, т. е. через напор-

Рис. 11. Схема флотатора ААрофлотор»:

ный резервуар может подаваться только часть сырой воды или часть очиценной (схема с рециркуляцией), которая смешивается с остальным стоком в приемной камере [91].

В ряде работ, относящихся к фтотацнонной очнстке нефтесодержащих сточыых вод, указывается, дто котичество воды, подаваемой насосами, может составля: ат 20 до 50% обшего количества сточных вод.
Если осуществляется предварят. эыная коагуляция сточной воды, используют схемы с рецирку:ыией или частичной перекач.

Рис. 19 Схема флотатора системы сВольф-Швимитоффяигер"

- нассс; 2 - ехрески; а - пламопрекния

кой сырого стока, что не вызывает разрушения хлопьеғ в наcoce.

В ряде слччаев такие схемы дают достаточный эффект очистки и снижают энергетические затраты на перекачку. Но возможен и иной подход к данному вопросу. Если концентрация загрязнений в сточных водах велика, обычная (прямая) напорная флотация изза ряда причнн может оказаться малоэффективной. В то же время такие способы флотация как им-

Рис. 13. Схемы подачи воды иа сосами при напорной флотации: а-с рецирууляцнеи; бо - с тастичиой подачен воды, насосом; в - с рабочей
 сынаюшнй труб

пеллерная, пневматическая, с подачей воздуха через пористые плиты (см. ниже), обеспечивающие высокую степень насыщения жндкости воздухои, малоэффективны при флотации коллоидных и хиопьевидных частиц. Тогда может оказаться приемлемой напор-

ная флотация с рабочей жндкотью (см. рис. Іら, схема в), l'ıбочая жидкость (тюбая относити:1:ло чнстая вода, имеющаяся на очистных сооружениях, в том ннеле очищенная на фпотационной очистных сооружения, в том чнсле очищенная на фнотационылй
установке) в количестве, чстановлнном для достижения необустановке) в количестве, установленном для достижения неоо-
ходимого удельного расхода воздуха, насыщается воддуком. ходимого удельного расхода воздуха, насыщается воздух
Объем ее должен быть более 1 на 1 объем очнщаемого стока.
Объем ее должеп быть более 1 на 1 объем очнщаемого стока.
Таким образом, следует разтиать схемы с обычной рецирку-
Таким образом, следует раэичать схемы с обычной рецирку-
диией, когда рециркляиомый расход не превышает расхода неочнщенной сточной жидкости, и с подачей (рециркупяєией) ра бочей жидкости, расход которой больше расхода неочищенной сточной жидкостн.

В последнем случае улуцнение флотации происходит как за счет сохранения хлопьенддной структуры загрязнений, так и за счет более быстрого всплывания агрегатов в менее стесненных условиях. Рабочую жидкость используют для очисткн стоков, имеюцих высокую концентрацию нераствореннык примесей (до имескцих выс граммов в литре), как, например, во флотационных илоуплотннтелях.
Условия, необходимые для получения нужного или максимального эффекта очистки (количество воздуха или давление, обес печивающее достаточное насыцение воздухом, добавление флотореагентов п др.), должны быть в каждом отдепьном стучае определены предварительно опытным путем на лабораторных中, лотационных установках. В некоторых табораторных нсследованиях по флотации, проводившихся автором, вода лодавалась и насыщалась воздухом небольшим поршневым насосом [67]

 преимущества перед проведением опыта в статических условиях
Другая лабораторная установка, использованная автором Другая лабораторная установка, использованная автором
(рис, 14), представляет собой отрезок винипластовой трубы со смотровым стеклом, где осуцествляется насыщение жидкости воздухом. Через кран в верхней части в трубу заливается испытываемая жидкость. Давление в трубе создается от трубопровода сжатого воздуха или ручным насосом. Воздух по воздушной трубке поступает в нижиюю пасть трубы. Снизу имеется краи для выпуска сточной жидкости, насыщенной воздухом. Сточная для ввй стбирается в мерный цилиндр с коническим днищем где происходит всплывание загрязнений и оседание на дно несфлотировавшихся частиц. При различных условиях насыщения, создаваемых в напорном резервуаре, олределяется продолжи тельность отстаивания, скорость обезвоживания всплывшего јшлама и эффект очистки, параметры для флотационной обработки исследуемых сточных вод напорным способом.
Эрлифтные установки. Жидкость в них насыщается микропузырьками воздуха за счет растворения его под повышен ным давлением с последуюшим выделением при понижении та кового. Большую роль, чем при напорной флотации, здесь играет процесс механнческого дробления воздуха при впуске его в аэра-

ор и при твижении воздчшыых пузырьков вверх. Затраты энер гор в 2 -4 раза меньше, чем в напорных установках и при механнческом дислергировании воздуха
Сами установки также дешевле других, но недостаток их - это єами установки также дешевле димость размщения флогомер на большой нысоте.

Рис. 14. Схема лабораторной установкн для исследований по напорной флотацни:

ра); 7- выпусквой кран; $\frac{s-\text {-ппуск }}{}$

Рис 15. Схема эрлифтной фло тационной установки: - пнтателиный бак; 2 - подающций

 дачи воздуха; 7 - аэратор.

В зрлифтной устаноєке (схема на рис. 15) из питательного бака (расположенного на высоте $20-30$ м) сточная жидкость поступает в аэратор. Туда же через перфорированную трубу подается сжатый воздух, который здесь растворяется. Поднимаясь по* подъемному трубопроводу вверх в результате снижения давления жидкость обогащается микропузырьками воздуха, выделяющимися из раствора. Воздушно-водяная эмульсия поступает в отстойник, где происходит осветление жидкости. Пена и сфлотировавшнеся загрязнения всплывают и удаляются самотеком или скребками, а осветленная вода снизу направляется на дальнейшую обработку.

Эрлифтные флотационные установки применяются для очистки некоторых загрязненных технологических растворов в химической промышленности [8].

фпотаиия с механическин дисперпрованиет воздуха

При лерсмещении струи воздуха в воде в последней создается значительное вихревое двнжение, под воздействнем которого воз душная струя распадается на отдельные пузырьки. Нх величина тем меньше, чем больше разность относитепьного перемещения воздуха и воды, а стабильность тем выше: чем меньше поверх ностие натяжение на границе раздела воздчх-вода [21]. Энер гичное перемешивание жидкоьти во фоотационных машинах, ооо рупванных импелдерами, создает в ней большое количество му, мешки ределенной величнны. При неботыших котичествах потребного для флотацин воздуха используется центробежный насос с пода чей воздуха во всасывающий патрубок. В стучае очистки сточной жидкости, агрессивной по отношеник к металлу, можно приме лить пневматическое диспертирование.

Импеллерныеустановки. Флотационные машины с диспергированием воздуха импеллером шкроко применяются при обогащении полезных ископаемых н могут быть нспользованы при очистке сточных вод. Двухкамерная флотационная машина конструкцни института «Механобр» приспособлена к очистке конструкцни от нефти (рис. 16) [45]
Сточная жидкость поступает в приемный карман, откуда по патрубку направляется в импеллер за счет пониження павтения, создаваемого при его вращении. Одновременно в импеллер по сиеџиальной трубе подсасывается воздух. Над импеллером находится статор, состоящий из диска, имеющето отверстия дтя внутренней циркуляции жидкости, и направ.пяющих. गопатками вращающегося импеллера воздух и жидкость перемешиваются и в виде эмульсии выбрасываются из статора, решетка вокруг которого является успокоителем. В этои зоне создается множество мепиих вихревых потоков, измельчаюших пузырьки воздуха. Степень измельчения их зависит от окружной скорости импеллера,
 что непосредствено влия решеткой всплывают пузырьки с прилипшими к ним загрязнениями. Пена удаляется с поверхности гребками. Из первой камеры чдстично осветленная и насыщенная воздухом вода поступает во второе отделение, где часть ее опять захватывается импеллером и ироисходит дополнительное ее осветление. Очищенная сточная жидкость удаляется через выпускной карман. При очистке нефтепромысловых сточных вод достаточно высокий эффект очистки (9 - 18 мг/л остаточной нефти) достигается при окружной скорости импеллера $12,5-15$ м/сек; насыщении стоков воздухом в количестве $0.52 x^{3 /} /$ м 3 и продолжительности флотацни 20-30 лин.

Уровень воды во флотационной камере рекомендуется приниМать $1,5-2$ м. При работе импелжера он повышается в 1,4 раза. Для экономного расходования электроэнергии и полного иснользования обтема камеры диаметр импеллеров крупных фло-

тационных машии редл: приниматся больше $600-750$ ми, что обусловливает устаноня большою числа камер я механизмов при очнстке з начительных количеств сточных вод, а это услож пяет их экеплуатацию. Применение импеллерных үстановои целесообразно при очистке сточной жидкасти с высокон концентра
 жогда для фвотировання их требуется высокая степень насыцения воздухом сточной жидкости (0,1 - 0.5 объема воздуха на 1 ния воздухом
пбъем воды).
Расчет импеллерной флотационной установки ведется в следующей посдедовательности.
Эксперимента.тьным путем определяют продолжительность флотацин t и окружную скорость $и$. Рабочую высоту камеры принимают не более 3 д, чтобы дтина вала от импеплера до привода не была слишком большой.

Қамера устраивается квадратной в плапе. Для хорошего насыщения воздухом всего объема жидкости длина стороны принима ется равной, л,

$$
\begin{equation*}
i=6 d \tag{14}
\end{equation*}
$$

: де d - диаметр импеллера, м
Тогда площадь камеры, \boldsymbol{m}^{2}, будет равна

$$
\begin{equation*}
t=l^{2}=36 d^{2} \tag{15}
\end{equation*}
$$

а рабочий объем ее, \boldsymbol{m}^{3},

$$
W=h f=36 h d^{2},
$$

где h - высота воздушно-водяной смеси (рабочая высота) в камере, \boldsymbol{m}

$$
\begin{equation*}
h=\frac{H_{c r}}{\gamma_{\mathrm{a} \cdot *}}, \tag{17}
\end{equation*}
$$

$H_{\text {ст }}$ - статический уровень воды в камере (до флотации), $м$;
犭ан - удельный вес аэрированной жидкости (воздушно-водяной смеси), т/ $\boldsymbol{\mu}^{3}\left(\gamma_{\text {а.ж }}=0,67 \gamma_{ж} ; \gamma_{ж}-\right.$ удельный вес сточной жидкости).
Статический уровень, м, определяется по формуле

$$
\begin{equation*}
H_{\mathrm{cr}}=\varphi \frac{u^{2}}{2 g} \tag{18}
\end{equation*}
$$

где 4.- коэффициент налора, равный для флотационных машин г, $0,2-0,3$.

Количество машин, необходимое для обработки суточного расхода сточных вод $Q_{\text {сут }}, \mu^{3}$, составляет

$$
\begin{equation*}
n=\frac{Q_{c y \mathrm{t}} t}{24 \cdot 60 W(1-a)} \tag{19}
\end{equation*}
$$

где α - коэффициент аэрации (принимается равным 0,35)
t - продолжительность флотации, мин,

Мощнонь мотора нмпеллера, квт, в одной камере составит

$$
\begin{equation*}
N=\frac{q_{1 . *} \Sigma_{2 . *} H_{s T}}{102 r_{1}} \tag{20}
\end{equation*}
$$

ге $\quad \eta-$ к.п. д., равный $0,2-0,3$
qะж- секундный расход аэрированной жидкости, лоек,

$$
\begin{equation*}
q_{\text {а. }}=\frac{Q_{\mathrm{cyt}} 1000}{86400 n(1-a)} . \tag{21}
\end{equation*}
$$

Флотируемость загрязнений и отработка техиологического режима флотации (продолжительность, число оборотов импе-тера я др.) предварительно проверяется на табораторной флотационной машине (рис. 17), которая должна иметь съемные қамеры и импеллеры разного размера.

импеллеры разного размера Скорость вращения импеллера изменяется стұпенчатыми шкивами, уровень пулины регутируется добавлением воды. Пробные опыты можно проводить также на лабораторной флотационной мапине нмпеллерного типа 138Б-РЛ института «Механ-

Рис. 16. Схема двухкамерной импеллерной үстановки:

 нине-ллер; $\quad 10$ - прнемны
$H-$ выпускод карман.

Рис 17 Схема лабораторной импеллерной установки:

 пеллер

обр» с объемом камеры 8 л. Достоинство ее заключается в полной имитации процесса, происходящего в производственных иапинах той же конструкции, но регулирование числа оборотов нмпеллера при этом затруднено.
 них пронсяшьі за счет завихрениі, создаваемыя 门аиоиим котесом центробсжного насоса. Схема установки такая же, как и прн нагорной фтотации (см. рис, 9), только отсутствует напорный резервуар. Преимуществом ее является то, что дтя подачи необходимого количества воздуха не требуется допо:ннте, тение. При этом способе флотации образующиеся пузырлки будчт более крупными, чек при напорной флотацин, следовательно

Во избежание преждевременного образования пены и крупных воздушных пузырей, насосы, подаюпит воду на флотацию, стедоздушных пузыреи, насосы, помешать как можю ближе к ф. отационной камере, и скодүет размешать как можио олиже к с. тационнои камере, и ско-
рость движения жидкости в папорио трубопроводе принимать не менее 2 м/сек.

Как и напорная, безндпорная флотация может осуцествляться по схемам с пипной или частичной подачей воды насосами, с рещириутяцией п с рабочей жндкоетью. Конструкции флотационных киер и основные расчетные параметры их такие же, как и при напорной фтотацин. При применении однокамерной установки перед впуском воды в камеру необходимо удалить избыточный перед впуском воды в камеру нда во напорного трубопровода. Воздуная трубка днаметром воздух из напорного трубопровода. воздунй точке напорной ли-40-50 мм присоединяется в самой высокои точке напорной ли. нии на некотором расстоянии от места впуска в камеру (2-3 м)
к верхней частғ трубопровода и выводится выше уровня воды в камере.
Безнапорные флотационные установки показывают неплохие результаты лри очистке сточных вод от жира, шерсти.
Пневматические установкн применяются при флотапионной очистке сточных вод, содержащих растворенные при месн агресснвные 10 отношению к механизмам (насосам, импел меси агреснищим движуциеся части.
лерам), имеющим движуциеся части. ка воздуха во флотационную камеру через специа.тьные сопла, ка воддуха во флотационную камеру которые располагаются на воздухораспределительных трубах, уктадываемых на дно флотационной камеры на расстоянин 250 -300 жм друг от друга. Диаметр отверстий сопел-1-1,2 мм, рабочее давление перед ними 3-5 ати. Скорость выхода струи воздуха из них 100-200 м/сек.

Продолжительность флотации t при таком диспергировании воздуха составляет $15-20$ мин, но в каждом случае должнд устанавливаться экспериментально, так же, как и интенсивность аэра ции. Гпубнна флотатора принимается 3-4 м. а объем, м, находии. Гл нз формулы

$$
\begin{equation*}
W=\frac{Q_{c y t} t}{24 \cdot 60(1-a)} . \tag{22}
\end{equation*}
$$

Коэффициент аэрации а ориентировочно может быть принят $0,2-0,3$

Расход воздуха составит

$$
\begin{equation*}
V=/ F_{1} \tag{23}
\end{equation*}
$$

где F - площадь водного зеркала флотаинонной камеры; I - интенсивность аэрации (орнентаровочно $15-20^{\circ} \mathrm{m}^{3} / \mathrm{m}^{2}$). Число coneл находим по формчле

$$
\begin{equation*}
n=\frac{V}{3600 f S} \tag{24}
\end{equation*}
$$

S - скорость воздушной струи, н/сек
Пену удаляют скребками.

Флотация с подлчей воздуха через пористые матершалм

Пропуская воздух через мелкне отверстия, можно получить микропузырьки, способные флотировать содержащиеся в жидкости загрязнения. Для этого необходима относительно небо.тьшая скорость истечения воздуха из отверстия, достаточное расстояние между отверстиями, наличие в жидкости реагентов-пенообразователей.

Определить размеры пузырьков с полным учетом всех особенностей процесса их отрыва от периметра отверстия затруднительно, однако при некоторых допущениях можно пользоваться довольно простыми формулами [21,58]. Так, для отверстия с радиусом менее 0,2 см

$$
\begin{equation*}
R=6 \sqrt[4]{r^{2} \jmath_{\Gamma, *}} \tag{25}
\end{equation*}
$$

где R - радиус пузырька, см:
r - радиус отверстия сл;
$\sigma_{\text {г.ж }}$ - поверхностное натяжение на границе раздела жидкостьгаз, дин/см.
Пузырьки, выходящие из одного отверстия, не должны сли.
 отверстия при спокойном движенни воды у аэратора можно найти по следующей формуле [21]

$$
\begin{equation*}
Q_{\text {Makc }}=104 r^{2} \tag{26}
\end{equation*}
$$

Формула справедлива для отверстня диаметром менее 3 мм Избыточное давленне Δp и минимальная величина d отверстия, через которое может проходить при таком давтении воздух, связывается уравнением Лапласа

$$
\begin{equation*}
d=\frac{2 \sigma_{\Gamma . K}}{\Delta \rho} \tag{27}
\end{equation*}
$$

Пользуясь этими формулами, можно предварительно установить некоторые параметры и режнм флотации, необходимые для проверки флотируемости загрязнений из данной сточной жидкости, которые должны быть уточнены в процессе исследований.

Флотация при нодаче воздуха через разлинные пористье матерналы по сравнении с рассмотренными выше способами насыцения сточных вод воздухам имеет олредетенные преимуцества: ния сохраняется простота конструкцнй флотационных камер, присусохрая напорным уставовкам; уменьшаются затраты на электрощал напорнототв сложные механизмы (насосы, импедлеры), энергню, отсутствуют сло очнстке агрессивных сточных вод. Нечто особенно важно при очнстке агрессивных сточных вод. ла-
 дастания и засорения пор и трудность растания и засорения пор и таудналов. подбора мелкопористых материалов
обеспечивающи подачу мелких и обеспечивающнх подачу мелких н сообразно испотьзовать этот способ на-

Рис. 18. Схема флотационной установки конструкиии Н. А. Гребнева:
1-кокпрессор; ${ }^{2}$ - порнетые ноппамкн; 3 - флото-

сыщения воздухом в установках пенной сепарации
Очиста небольших количеств сточной жидкости этим спосоомис (рис. 18), близких
 по конструкцин Гребневым [10].

Сточная жидкость по трубопроводу подается в верхнюю часть вертикально установленного цилиндра высотой $2-4$ м, в нижней устраивается поддон, под который закачивается воздух от компрессора. На поддоне крепятся керамические колпачки с отверстиями, через них сжатый воздух поступает в сточную жидкость, соти, за загрязнения. Осветленная вода забирается из нижней флотируяиняра и через регулятор уровня отводится с установки, части цилиндра и чере ролия жой желоб и по трубе удаляется из а пен него.

Как видно из приведенной схемы, в этом аппарате использован принцип противотока, т. е. встречного движення жидкости и пузырьков воздуха. Очистка на такнх установках может производиться как в одну, таки в две и более ступеней.

Конструкцня установки с диспергированием воздуха чсрез по ристые материалы для очистки больших количеств сточнои жидристые матерналыет поставляет собой резервуар с горизонтальным движеннем воды (рис. 19).

воды (рис. 19). Воздух во фльтросы, уложенные на дне. Сточная жидкость подается тые фильтросы, уложенные нанию часть флотационной камеры и отвопится из нижней

асти через регулятор уровня. Пена скребковым транспортером собирается в отводящнй желоб.
Эффект флотационной очистки сточной жидкости на установих приведенного типа, а также их габариты и размеры зависят от величины отверстий в пористых колпачках или фнльтросах давления воздуха под фильтросами; расдода воздуха, $\boldsymbol{\mu}^{3} / \boldsymbol{\mu}^{2}$ или

Рнс. 19. Флотачиснная установка с диспергированнем воздука через нелкопористье фильтры:
 модриемник; $5-$ регулятор уровня доди на выпуске.
$м^{3} / м^{3} ;$ продолжительности флотации; уровня воды по подачи воз духа и во время его подачн.
По опытным данным, относящимея к обработке сточных вод, содержащих отходы смол и нефти $[10,46]$, величина отверетии дотжна быть в срепнем от 4 до 20 мкм, давление воздуха - 1-
 2 ати, расход воздуха - 40 - $70 \mu^{3} \boldsymbol{\mu}^{2}$ или $0,24-0,31$ м м м $\boldsymbol{\mu}^{2}$ продолжительность флотации - не менее 20-30 мин, рабочии уровень до флотации-1,5-2 $\boldsymbol{\mu}$, уровень воды во время флотации
повышается в зависимости от давления (расхода) воздуха на повышается в зависимости от давлен
величину от 6 (1 атu) до 56% (2 ати).

Проверка флотируемости загрязнений в сточных водах при диспергировании воздуха через мелкопористые материалы и ус-

Рис. 20. Лабораторная установ ка дія иселедования по флотации с диспергированием воздуха через пористые матерналы: 1-компессор; ${ }^{2}$-ресивер; ${ }^{3}$ -
 камера; 7-ротаметр.

тановление необходимых параметров для проектирования может быть проведена на лабораторной флотационной установке [46]. Установка (рис. 20) состоит из толстостенной стеклянной трубы диаметром 100 им и ллиной 1,8 м, являющейся флотационной дамет с мелкопористыми фильтросами, в нижней части. Воздух
 под фильтросы подается от комый манометр. Давление регулиру-

ется итольчатым вентилем. Расход воздуха определяется реометется игольцатым вентитем. Расход воздуха фнотаднонной камеры. Пробы длл ана.лиза отбнраются из ннжней ее части.

Электрофлотация

При этом способе сточная жипкость прн пропускании через нее тояния электрического тока насьщается пуаырьками газа (волорода), образуюцегося на одном из электродов (катоде).
Прохождение электрического тока через сточную жндкость вровшуюся зачастъю многокомпонентным раствором-электропитом, нзменяет химическнй состав жидкости, свойства и состоя ние нерастворенных примесей. В одних случаях эти изменения положитетьно влияют на пропесс очистки стоков, в других - имн надо управлять, стеремясь к достнжению наибольшего эффекта очистки вообще или от определенного компонента.
В сточной жидкости при прохождении ее через межэлектрод ве простанство происходят такие процессы, как электро.из, оляризация частиц окектрфорез окислительно-восстановительо.яризация
 гом и с другими компонентами. Кнтенсивпость указанных про цессов завнсит, во-первых, от хнмического состава жидкости во-вторых, от материала электродов, которые могут быть раство римыми или нерастворимыми, и в-третьих, от параметров элек трического тока: напряжения, плотности на электродах, расхода.
В стучае применения растворимых электродов (обычно железных ити алюмнниевых) на аноде происходит анодное растворе ние металла, в результате чего в воду переходят катноны железа ли алюминия, которые встречаясь с гидроксильными группами, бражют гияраты закиси или окиси, янляющиеся распространенобразукотния Одновременное ными в практике водообработки коагулянтами. Одновременное образование хлопьев коагулянта н пузырьков газа в стесненных условиях межэлектродного пространства создает предпосылки для надежного закрепления газовых пузырьков на хлопьях, интенсивной коагуляции загрязнений, энергичного протекания про цессов сорбции, адгезии и т. д. и, как следствие, более эффективной флотации.

Коагуляция загрязнений в межэлектродном пространстве моет происходить не только за счет растворения анода, но и в ремлит
 частиц на элекородах, образовакия в раси на поверхности час кислород), разрушающих сольватные слои на поверхности час-
тиц $[61,63]$. Эти процессы выступают на первый план в случае тиц $[61,63]$. Эти процессы выступают
ирименения нерастворимых электродов.
Выбор материала электродов, таким образом, может быть увязан с агрегативной устойчивостью частиц загрязнений в сточной жидкости. При невысоком содержании коллоидальной фазы и низкой агрегативной устойчивости загрязнений возможно приме-

нение нерастворимых электродов, тоғда как прн наличии высоко устойчивых загрязнений, чдатение которых достнгается только при значительных дозах коагуднитов, необиодимо применять растворимые электроды
Электрофлотационные установки, технологичесине параметры моторых выбраны исходя из условий достижения максиматьного которых выораны исходния следует именовать электро коагуляционно - флотационными установками
Прн небольной пронзводительности (до $10-15 \mathrm{~m}^{3} / 4$) длектрофлотационные уста овии могут быть однокамер овки (рис 21) (рис. 21)
По схеме, приведенной на рнс. 21, a, загрязненная вода подается в иижнюю часть флотационной камеры, проходит между электродами и отводится из середины каме

Phc. 21 Схемы одномамерни又 элex трофлотационных установок: 1二 ирямого потокв: 6 - ппотнпоточвая
 ры на последуюшие ступени очнстки. В схеме на рис. 21, 6 нспользован принцип противотока - неочишенная жидкость движется сверху вниз навстречу всидываюшия уузырькам газа вода отводнтся из нижней части ой камеры. Если в сточной жидкости мало нефлотируюцихся легко оседающих частиц, эффект осветления по этой схеме будет дос Таточно высоКим

Электрофлотационные установки большей производительности рекомендуется устраивать двухкамерными. Двухкамерные установки горизонтального и вертикального типов изображены на рис. 22 н 23 . Состоят они из электродного отделения и отстоиной части. Сточная жидкость поступает в успокоитель, который отдеден от электродного отделения решеткой. Проходя через межслектродное иространство, она насыщается пузырьками газа, под-
 вергается вад ия или обогащается гидроокисями - коагуагуляции загрязнений, нли обогащается гидроокисями - коагулянтами (при растворимых электродах). Всллывание частиц происходит в отстойнай части. Всплывший шлам сгребается скребками в шламоотводящий лоток. Предусмотрено также удатение осадка, который может выпадать на дно.

Расчет установок по электрофлотации или электрокоагуляции сводится к ппределению обшего объема W установки, объемов электродного (камера коагуляцни) отделения W и отстоиной час- $^{\text {и }}$ и ти (камера флотации) W_{2}, необходимых конструктивных н электрических параметров

Обций рабочий объем установки, $\boldsymbol{\mu}^{3}$,

$$
\begin{equation*}
W=W_{1}+W_{2} \tag{28}
\end{equation*}
$$

Объем электродного отделения оиределяется из возможности размещения в нем электродной сястемы неабходимой мощности Для зтого, прежде всего, необходимо установить число пластин п электродов, которые могут быть размещены в установке приня

Рис. 22. Схема горизонтального электрофлотатора:

той ширины B (все конструктивные параметры даются в соответствии с обозначениями на рис. 22). Ширина горизонтальной установки выбирается по ее производительности и разработанным конструкцням скребкового механизма [5] в соответствии с табл. 2.

$$
\begin{equation*}
n=\frac{B-2 d-c}{p+c}, \tag{29}
\end{equation*}
$$

где d - величина зазора между крайними пластинами и стенками камеры 100 мк;
$с$ - величина зазора между пластинами, 15-20 мм;
p - толщина мластин $6-10$ мм.
Torда необхопимая площадь пластин будет равна

$$
\begin{equation*}
f=\frac{S}{n-1} \tag{30}
\end{equation*}
$$

где S - активная поверхность электродов, μ^{2}, определяемая по формуле

$$
\begin{equation*}
S=\frac{D Q_{4}}{i} \tag{31}
\end{equation*}
$$

где D - удельное количество электрнчества, $a \cdot \psi / M^{3}$; Q_{4} - расчетный расход сточных вод, \mathcal{M}^{3} / u;
Q_{i} - плотность тока на электродах, a / μ^{2}.

D и i, как правило, определяютея экнириментальным путем. для предварительных расчетов можно воснользоваться данными приведенными в табл. 3 (электрокоагуляиия-флотация).

Рис. 23. Схема вертикального электрофлотатора: 1- впускная камера; 2 - решетка-успокоитель; 3 - элсктродная
 щщели для сбора осяяленнон воды; 6- слиральнй схребок; ${ }^{7}$

Определив \& и задав высоту пластин b, которую це.лесообразно принимать равной высоте осветленной жидкости ($h_{\mathrm{L}}=1-1,5$ м), можно определить длину пластин l, M,

$$
\begin{equation*}
l=\frac{f}{b} \tag{32}
\end{equation*}
$$

и длину электродной камеры
L^{2}, M,

$$
\begin{equation*}
L_{2}=l+2 d \tag{33}
\end{equation*}
$$

Тогда объем W_{I} электродной камеры составит, м ${ }^{3}$,
$W_{1}=B H_{1} L_{2}$,
(34)

Пролзволатель-	LIцрина.	
	ckpe Ek3	секция
	1975	2000
$90-120$	2475	2500
190-180	2975	3000

таблища 3
Паотность тока и удельное колнчество электрнчества при очнстие некотерых стоиов электрокоагуляиней-флотацней

Сточные воды		Y neлthoe koalmyectoo
Кожевеньнх заводов при дубления:		
хронсвом	50-100	$300-500$ $300-600$
смешанном	$50-\mathrm{l}{ }^{\text {5 }}$	100-600
Меховых фабрик	50--100	100-270
Мясокомбинатов	$100-200$ $40-80$	15-20

откуда H_{2} - рабочая высота камеры, м,

$$
\begin{equation*}
H_{1}=h_{1}+h_{2}+h_{9} \tag{35}
\end{equation*}
$$

где h_{1} - высота осветленного слоя, 1 - 1,5 м
h_{2} - зацитный слой, $0,3-0,5 \mathrm{~m}$;
h_{3} - слой шлама, $0,4-0,5 \mathrm{~m}$
Находим объем отстойной части W_{2}, x^{3}

$$
\begin{equation*}
W_{2}=Q_{Y} \quad t \tag{36}
\end{equation*}
$$

где t - продолжительность осветления, опредетяемая эксперииентальным путем обычно $0,3-0,75$ и
случае применения растворимых электродов необходимо определить количество металла, переходяшего в $1 \mu^{3}$ раствора, z / μ^{3}, н срок службы электродной системы T, сутки.

$$
\begin{equation*}
m=k_{1} A D, \tag{37}
\end{equation*}
$$

где k_{1} - коэффнциент выхода по току; в каждом конкретном случае определяется экспериментально, колеблется в предетах 0,5-0,95
A - электрохимический эквивалент, г/a.д (для $\mathrm{Fe}^{+2} A=$ $=1,042$, для $\mathrm{Fe}^{+3} A=0,695$, для $A 1^{+3} A=0,336$);

$$
\begin{equation*}
T=-\frac{M \cdot 100}{m Q_{\mathrm{cyr}}} \tag{38}
\end{equation*}
$$

Здесь M - вес металла электродов, который растворяется при ялектролизе, ке;

находим по формуле

$$
\begin{equation*}
M=\gamma k_{2} f p n \tag{39}
\end{equation*}
$$

где γ - объемный вес металла, кг/ $\boldsymbol{\mu}^{3}$;
k_{2} - коэффициент использования материала электродов -0,8-0,9.

Бнопогмческая м хнмическая флогацим

Этот метод применяется дтя уплотненяя осадка нз первицных отстойников при очнстке городскнх сточных вод
Осадок нз первичных отстойникв собнрается в специальные резервуары, где подогревается паром до темлературы $35-55^{\circ} \mathrm{C}$, н при такой температуре выдерживается несколько суток. За счет развития и деятельности микроорганизмов выделяются пу выри газа, которыми частниы осадка уносятся в пеный слой зерьки кала, котор и обезвоживаются.
Таким путем можно понизить влажность осадка до 80 и т тем самым об́легчить и удешевить его дальнейшчю обработку, особенно при использовании механнческого обезвоживания [96] указанной степель обезвоживаиня осадка из первкчных отстой
 ил уплотнению бнологической флотацней поддается хуже.
При введении в сточную жидкость некоторых реагентов для ее обработки могут иметь место химические процессы, сопровож даюшнеся выделеннеы газов - кислорода, углекнслого газа, хло ра н тр При известных условиях пуаырьки образовавшихся га рав могут ролипать к нерастворенным загряэнениям и выноситв зов могут прилй
нх в пенный слой.
Такое явление с довольно высоким эффектом осветления и хо рошим уплотнением всплывающего осадка наблюдается при об рошик уплотнением вочных вод заводов синтетических продуктон хлорной известью с одновременным введением коагулянтов, а также при добавленни глинозема и серной кистоты в сточные воды фабрик первичной обработки шерсти (техническое нспользо ванне этого явления подробно описано далее). Принципиальная схема флотационной камеры, предназначенной дтя химической флотацни, представлена на рнс. 24. Сточные воды поступают в

Рис. 24. Схема установки для химической флотации: - подводипен канал; 2-трубопровод подачн ревтентов
 ленне; б - скребин; 7 - шламоприежник с выпуском щлама 8 - регулятор уровн
и удаления осалка.

смеситель-реактор, куда по трубопроводу подаются и необходи мые реагенты; во избежание преждевременной дегазации стоков время их пребывания в камере реакции следует принимать ми нимальным (3-5 мин)

Перемешив: :ые можно произвоию мешалкой механического тнла. Насышшиая пузырьками $!$ м, елывшегося газа стпчная жидкость постйает во флотаиионнуо камеру. где твердая фаза выдедяется в иеныый слой, который непрерывно или териодически сгребается скребковым транспортером в шламоотводяший лоток. Осветленная вода уходит нз камеры через водостив с регулируемой высотой кромки. На дне флотационной камеры распо лагается грзевая труба для выпуска осадка, выпадающето на дно При значительном котичестве осалка в днище камеры мо гут быть устрпены приямки с выпуском осалка из них.

ОЧИСТКА ФЛОТАЦИЕИ НЕКОТОРЫХ КАТЕГОРИИ сточных воД

Городские сточные воды

Флотация городских сточных вод довольно широко использу ется в зарубежной практике. Нанболее часто она применяется пля прелварительного осветлення сточных вод (перед биологи д.тя гредваритй очисткой) при этом флотаторы устраиваются либо само-
 стоятельно (например, выпопня с птстойниками. Некоторые за рубежниов), либо в сочетанино на возможность флотанион ного осветлення при очистке сточных вод на биофильтрах и уп лотнения осадка и активного ила [90,92]. Флотацня как первын этап очистки сточной жидкости представ.яяет интерес. так как интенсифицирует и повышает эффект предварительной обработ интенснов

Эффективность работы современных конструкыий первнчных отстойников не превышает $60-65 \%$ при продолжитетьности отстаивания $1,5-2$ ч, которая опредепяется присутствием в сточстаивания 1, - -2 колой сидравлической крупностью, что обуных водах частиц с малой тидравлй из отстойников взвеси. При славтивает и количество выносимой из отстойик воздуха в пен насыщении сточной жидкости микропузырвками воздусыты

Некотор минутного отстаивания взвеси могут быть сфлотированы, бта годаря чему значительно повышается процент задержания нерастворенны примесей и сокрашается время пребывания стоков в торейтиках Общий объем отстойников и флотаторов не прсвыотетой иогда оианатся и меньше объема одних отстойников шает, а иногда оказывасшегок и лесколовок аэрашии с последую Устройство посте решегок и песколовок аэрапии с последую щей вакуум-флотацией рекомендуется некоторый [107]
ми авторами для всех крупных очистных станцни [107] я дв двх
Очистка бытовых сточных вод здесь осуществляется на двух ступенях биологических фильтров, причсм предварительная ве дется перед первой ступенью биотогических фитьтров вакуум

фпотацией (рис. 25) [75]. Конструкция вакучм-флотатора анало гична приведенной на рис. 7.

Нагрузка на I з² волного зеркала вакуум-флотатора составля ет $200^{\boldsymbol{\mu}^{3} / с ц т \text {. Эффективность его работы довольно высокая }}$ (таб.t.4).

Рис. 25. Схема очистных сооруженнй с накуум-флотацией

Раб́ота очистных сооружений по аналогичной схеме, но с одноступенчатой бнологической очисткой н более высокой нагруз. кой - 327 м $^{3} / с у т$ на $1 \boldsymbol{\mu}^{2}$ (время пребывания в вакуум-флотато-ре-14 мин. учнтывая рециркуппионный расход) описана в [111].

ффективность работы сганций с вакуун-флотаторами н бнолегической очисткой

Наименование показателей	Очистка в две ступени			Очистка в одну ступень		
	Неочнщенная сточная жидкасть		Пос.se вторнчного отстойнй	Неочимен нass cto 4 H 白 жид	После флотадии	На вaxose
Содержание веществ:						
взвешенных	$\underline{195}$	$\frac{104}{46.6}$	$\frac{15}{92,3}$	$\frac{57}{-}$	$\frac{45,7}{20}$	$\frac{16,3}{71,4}$
оседающих	$\frac{47}{-}$	17	$\stackrel{0}{100}$	$\stackrel{0,85}{-}$	$\frac{0.4}{53}$	$\frac{0}{100}$
БПК	$\underline{162}$	$\stackrel{116}{28,4}$	11	$\underline{67,3}$	$-\frac{64}{5}$	$\frac{25,5}{62,1}$

Из табл. 4 видно, что при такой нагрузке эффект очистки в ва куум-флотаторе значительно ниже.
Приведенные выше результаты работы вакуум-флотатора прн очистке сточных вод без добавления флотореагентов близки и

другим опубликованным данньм [86], которые этределяют зффект его работы при 20-минутном пребыванин "точных вод по взвешенным веществам $40-50 \%$, по БПК-20-25\%. Приво дится также несколько действующнх технологнческих схем очнстки сточных вод с применением вакуум-фиотагоров в сочетании с онологическими фильтрамп
При высоком начатьном содержании нерастворенных загряз нений перед флотатором может устранваться предварительный отстойник Втияние способа предварительнои азрации жидкости на эффективность работы вакуум-флотатора полробно рассмот рено [99] Без аэрании эадержание взвешенных веществ достирало в 34%, п при интенсивной аэрации - возросло до $55-57 \%$ гало 34%, а при интенсивнои аэрацмн - возросло мо
Несмотря на некоторые расхождения резчльтатов, получениык различными исследователями [84, 87, 111], по-видимому, из-за неодинаковых состава сточных вод и режима проведения флотации, можно сделать вывод, что применение вакуумной флотации для очнстки бытовых сточных вод имеет определенные технологнческие преииущества при соответствующем экономическом обосновании.

Более перспектнвным для очнстки городских стоков является нпорный способ флотаиии Сообщается щапример об очистк сточных вол общесптавной и бытовой канализаций налорной фнотацией $[97,113]$. В одном из районов Сан-Франциско постро ена такая опытная станция пронзводнтельностью 60 тыс. $\boldsymbol{m}^{3} / с у т$
Ннтересным вариантом предварительного осветления сточны од общесплавной канализации является применение микропро цеживания с последуюшей напорной флотацией [110, 112]. Сле дует отметить, что преимуществом напорной флотацин переп ва куумнои при очистке бытовых стоков является насыщение стоков кислородом воздуха, тогда как при вакуумной флотации концен тация растворенного киспорода уменьшается, что, естественно, тормозит протекание биохимических процессов окисления.

Повышение эффективности флотацнонной обработки бытовых сточных вод как по взвепенным веществам, так и по БПК возможно при применении коагулянтов и флотореагентов. Исполь зуя различные флокултнты, можно получить эффект очистка по взвешенным веществам $90-95 \%$ при остаточной концентрацин $7-20$ мг/л. Удачно подобрав флотореагент, можно почти пол ностью задержать взвеси (98-99\%) и значительно снизнть БП (40-60\%). Так, например [73], флотацией в лабораторных ус ловиях (реагент лауриламингидрохлорид, доза $60-80$ ме/А) при 15 мин аэрации и предварительном отстаивании в течение 15 мин добивались снижения концентрации взвешенных веществ в сме сн бытовых стоков с текстильными на $96,5-98,7 \%$ и снижения БПК на $57-65 \%$ (остаточное содержание взвешенных веществ 3-10 $\mathrm{mz} / \boldsymbol{\lambda}, ~ Б П К-150-160 \mathrm{mz} / \Omega)$
Существенное значение при подборе фтотореагентов имеет их

влняние на ход бнохимической переработки загрязивнй. Флото реаент не должен отрицательно воадеиствовать на последуюшую бнологическую очистку или дополннте.тьно загрязнять сточ не воды Наиболее приемлемы поверхностно-активные вещест полаюшиеся биохимическому разрушению
В Украинском ннституте инженеров водного хозяйства рассматрнвались различные пути нстользовання флотацни при очистке городских сточных вод

замена первичных отстойников флотационными установкамн
замена вторичных отстойников флотационными установками;
флотаинонное уплотнение возвратного и нзбыточного актнвного ила [41];

спользованне флотацни при третичной очисте сточных вод. В результате исследований были раэработаны технологин употнения нзоыточного активного ила флотацней и биокоагуля иии-флотацин для первичного осветления сточных вод [59], Обычная биокоагуляцня предусматривает использование фермен тативной и сорбционной актнвности избыточного ила, который подается в сточную жидкость перед ее отстаиванием. Интенскфикация процесса биокоагұяции достигается аэрацней (1520 мин) смеси сточной жидкости н избыточного активного ила в специальных камерах. Такой прием позволяет повысить яффект отстаивания до 75% и соответсгвенно уменьшить БПК за счет олее полного извлечения из стока нерастворенной фазы.

Биокоагуляция-флотация - сочетание процесса биокоагуляии с напорной флотацией
Конструктнвно бнокоагуляция-флотация может быть осуществлена по трем схемам
первая - стокн в отетойниках пребывают 10 - 15 мин, в бнокоагуляторах - $15-20$ мин, в напорных флотацнонных установках - 20 мин считая на сточную и рециркуляционную или рабочую жидкости
вторая - в отстойниках-бнокоагуляторах - 20 - 25 мин, в на норных флотационных установках - 20 мин;
третья - в напорных флотационных установках (с бункерами для осадка по типу, показанному на рис. 38) - 25 мин; пребывания сточнои и рециркуляционнои жидкости.

Эффект очистки всех трех схем примерно одинаков. С точки зрения объема и компактности сооружений наиболее приемлема третья схема, однако она не совсем удобна в эксплуатации из-за поведения флотации и отстаивания в одном объеме, так как чистка осадочных бункеров может нарушать режим флотации. Поэтому при фпотационных установках горизонтального типа рекомендуется применять вторую, а прн вертикальных -- третью хему.

Исследования, проводившиеся в лабораторных и производственных условиях, позволили установить основные технологические параметры процесса, на основании которых был разработан

и осуществлен в натуре проект переииялывания горизонтальных отстойников в биокоагуляторы 1 , моры на очистнык оружениях льнокомбината г. Ровно $: ~\|:\|,$. повышеиня производительности очнстных сооружений. Јlии:ипиальная схема пере-

Рнс. 26. Схема переоборудонания горнзонтального отстойника в био коагулязор-флотатор:

 сборняк сот оопом пены.

оборудования горизонтальных отетойников в бнокоагуляторыфлотаторы показана на рис. 26. В очищаемую жндкость подается весь изб̆ыточный активный ил, что избавляет от необходимости отдетьно уллотнять часть его. Смесь поступает в отделение биокоагуляиии и отстаивания, куда подается воздух через дырчатые коабы сти фильтросы в обычном для биокоагуляторов количест-
 ве $\left(0,5\right.$ m $^{3} / \boldsymbol{m}^{3}$ жидкости). Тяжелый осадок, выпадающии в бункера, удаляется через трубопроводы для выпуска осадка 1 раз в смену. Из отделения биокоагуляции и отстаивания стоки поступают в отсек смешения, где смешиваютяя с репикулядионной жидкостью, насыщенной воздухом, в налорном баке при давлении 3,5-4 ати и продолжительности насыщения 3 мин. Всплывание цлама происходит во флотационном отделении. Всплыв ший шлам скребками периодически сгоняется в шламоотводящий лоток. Оптимальный уровень воды во флотокамере при сгоне щлама регулируется шибером. Уборка шлама пронзводится при нлама $94-95 \%$ через 4-6 часов его накопления. Практи влажнос ио \quad боле чески можно при более длительном накопмени пол влажностью около 90%, однако при этом необходимо иное конструктивное решение способа уборки и транспортировки его. Возможность получения смеси осадка и активного ила с низкой влажностью имеет большое технико-экономическое значение, так

как сушественно влияет на объем сооружений по сбраживапию и обезвоживанию осадков
Прнменение бнокоагуляторов-флотаторов в технолотических вих биологическй очистки стоков позвояяет чменьшить об́тсл метантенков и площадь иловых площадок
При колнчестве реииркулиднонной жидкости, равном по о́́тему смеси стоков с активным иіом (рециркуляднонное отношение $1: 1$). снижение концентрация взвешенных веществ происходит па $55-75 \%$, в зависимости от соотношения концентраиии взвесей и активного нпа, снижение БПК - на $35-40 \%$ Объем же сооружений при этом уменьшается почти в два раза по сравнению собъемом обычных бнокоагуляторов-отстоиников к в полтора раза по сравнению с простым отстаиванием.
ор аоборудование первичных отстойников в биокоагултторыфлотаторы - эффектизное средство интенснфикаиии работы действующих очнстных сооруженнй.

Сточные воды, содержащие нефть и нефтепродукты

В обцем объеме загряэненных промышленных сточных вод доля стоков, содержащих нефть и нефтелродукты, едва ли не самая эначнтельная

Нефтесодержащие сточные воды образуются на нефтепромысНефт при добыче нефти, на нефтеперерабатывающих (НПЗ) и нефтехнмических заводах, на нефтебазах, на железнодорожных промывочно-пропарочных станциях при обработке нефтяных цистерн, на станциях перекачки нефтепродуктов, на машиностроительных заводах и тепловых электростанциях, в речных и морских портах при эксплуатации нефтеналивных судов и т. п. Содержание как нефтепродуктов, так и других загрязнителей в этих сточних водах колеблется в весьма широких пределах. В таб.т. 5 приводятся основные характеристики некоторых сточных вод, загрязненных нефтью.

Таб.7ица 5
Характеристина нефтесодержащих сточных вод некоторых предприятнй

		С.tore HiI3		$\begin{array}{\|c} \text { Стоки промы- } \\ \text { вочнопрома- } \\ \text { рочных } \\ \text { станция } \end{array}$	Ebantacthote волы танкеров
		$\left\|\begin{array}{c} 1-\text {-я сисчемя } \\ \text { канадиза- } \\ \text { нии } \end{array}\right\|$	or 9.70 y		
Содержание, $\quad \mid \boldsymbol{x}$: нефтти	0.7-4.5	1--8	1-10	10-20	Д) 120
механияеских примесей	1.5-2	$0,1-0,3$	0,3-0,8	2-3	До 0,2
Общая ция, z / n	2,1-11,8	0,2-0,5	30-40	-	3,5-16

Очнстка сточных вол от нефти, как правило, сопряжена с нз стыии тудностями обчсловленными тем. что часть нефти иногд значнтельная (до $1-3 ~ г / \Omega$), находится в эмульгирован ном состоянии. Крулные капелькн нефти нои тяжелые фракция ее (мазуты, битумы) хорошо всплывают ипи оседают на дно, ее (мазуты, онтумы) хоров нефть сохраняет устойчивое взве. тогда как эмульгированная при концентрациях, не превышаюшенное состояние, особенно при концентрамняк, новния веществ щих 1000 ме/л, и в присутствии поверхностно-актнвних частиды или тонких мннеральных слияованной нефти от стнян.
В связи с этим даже весьма продолжительным отстаиваннем, наприме в прудах-отстойниках, невозможно обестечить достаточный аффект очистки. Поэтому наряду с различными другимн точны эф фексии нофтесодеращих сточных вал в отечестметодами очисти венной, так и зарубежнои практнке применяется фл импй
 ные установки, реже - вакуум-флотация. Проводились также исследования флотации с подац
фильтросы и электрофлотации. флотационных установок и при многочисленных нсследованиях иногда сушественно отличаются как по эффекту очистки, так и по режиму фтотации, что, по-видимому, объясняется различия ии миическом и механическом составах нефтесодержащих ми вов отдельных заволов и промыслов, и, главным образом, тем стоков отд в состояннем, в котород алия
дах, - степеньо их эмульгированности
Чем сильнее эмульгированы нефтепродукты, тем более мелкне пуэырьки воздука нужны для флотации и тем болтший эффект даст применение коагулянтов. При крупных капельках нефти нужны соответственно более крупные воздушные пузырьки и нет необходимости в добавлении коагулянтов. В ряде случаев иссле дователи не учитывают этого фактора и поэтому при флотации получают невысокий эффект очнстки
Хорошие результаты получены при очистке нефтепромысловых точных вод в импеллерной флотационной машине тнпа инсти тута «Механобр» (см. рис. 16) [45, 46]. При времени пребывания сточных вод в машине 30 мин, насыщенин стоков воздухом в количестве $0,51 \mathrm{~m}^{3} / \mathrm{m}^{3}$ и окружной скорости импеллера $12,5 \mathrm{~m} /$ сек остаточное содержание нефти составляло 9 мә/凡 (в исходной воде было 25-907 мг/л).
Установлено, что эффект очнсткн и продолжительность флота ции находятся в зависимости от окружной скорости импеллера. При повышении скорости увеличивается степень диспергирова ния воздуха, повышается эффект флотации и уменьшается ее продолжительность Приводятся также результаты лаборатор ных опытов по очистке сточных вод нефтепромыслов флотациеи с диспергированием воздуха через мелкопористые фильтросы с

 снизить содержание нефти до 8 н 2 ме/А соответствснно (начальное содержание 224 м $/ \boldsymbol{\Omega}$). Расход воздуха составил 70,4 м $^{3} \boldsymbol{\mu}^{2} \cdot 4$. Продолжительность фтотаиии при этом снособе насышения стоков воздухом значитетьно выше, чем в импеллерных установках, однако в конструктивном отношении чстановки проще. Кроме того, установки с днспергированием поздуха через фильтросы имеют то преимущество, что флотацию можно вести в резервуаре большого обьема, тогда как импетлерная флотация требует установки большого чнсла машин, поскольку размеры каждой ма шины ограничены.
Напорная флотация нефтесодержащих сточных вод рекомендуется при содержании в исходной воде не более 250 жд/д нефтепродуктов $[15,16,42,43,44,103]$
Насыщение воздухом пронзводится в напорном резервуаре. рассчитываемом на $2-3$ дин пребывания сточных вод. Подачу воздуха рекомендуется осуществлять через эжектор, устанавливаемый на перемычке между всасывающим и налорным трубопроводами. Флотационную камеру можно выполнять в виде горизонтального или радикального отстойников, оборудованных устройствами для съема пены с поверхности, со временем пребывания стоков $20-30$ мин. При использования реагентов - сернокнслого алюминия 50 ме/л и активированной кремнекислоты 10 ме/я - остаточное содержание нефтепродуктов составит 3050 мел (25-30\% от начального содержания), без применения реагентов эффект очистки - $50-60 \%$.

Зарубежный опыт очнстки нефтесодержащих сточных вод нанорной фпотацией показывает, что в большинстве случаев остаточное содержание нефтепродчктов составляет $30-100$ мд/л без применения реагентов и $12-35$ ме/л - с применением их. Дозу сернокислого алюминия принимают $25-30$ ме/ , продолжительность флотации $12-20$ мин [111]. При невысоком начальном содержании нефти (до 100 ма/л), более продолжительном времени флоташии и повышенных дозах реагентов (до 60 ме/л) удается снижать остаточное содержание пефтепродуктов до 4 нг/А [80].

Следовательно, эффект очистки нефтесодержащих стоков нащорной флотацией достаточно высок, поэтому можно предположить, что в ряде случаев проведенне напорнои флотации в две ступени окажется технически и экономически целесообразным и обеспечит необходимую степень очистки.
При флотационной обработке, помимо сннжения нефтепродуктов, значительно снижается химическое лотребление кислорода. По данным Пратера [102], при обработке стоков без добавления реагентов общее ХПК сннжается на 65-75\%, а ХПК, создаваемое растворимыми загрязнениями, - на 15 - 20%. Добавленне фосфатов снижает обшее ХПК иа $75-92 \%$, а ХПК растворенных загрязнений - на $30-35 \%$.

В отечественной практике нотация заняда прочное место в ехнологических схемах очисти сточных вод нефтеперерабаты-
 валощнх заводов. Напориве нии стоков первой снстемы канализдтановки входят в узел очистки стоков пертесодержацие стоки, ции НПЗ (маломинерализованные неф стоков от электрообес-
 соливающнх установок
стемы канализации НПЗ. В соответствии с технологической схеме воды проходят через вой спстемы канапизации НІЗ, сточные воль попо отстаивания, песколовки, нефтеловушки, пруды допалиителюнопо ваправляются флотационные установкн, кварцевые фильтры н направлтются в оборотную систему. Напорныи или без рециркутяции [19]. На устраиваться с рециркуляцния в напорных резервуарах в течесыщение воздухом пронслин 3-4 ати. Количество подаваемого ние 1-2 мин при давлении З-4 ати. количесй насосом. Провоздуха - 5% от объема воды, должительность во флотацноннон 4 - 5 м $^{3} / 4$. В схеме с рецирку$1 \boldsymbol{\mu}^{2}$ поверхности водного зеркала 4-5 м $\boldsymbol{\mu}^{3}$ и. В схеме с рецир 5% ляцией насосом подается очнценная жидкость в количестве 50% от расхода, поступающего на очистку. Естественно, что прн таком соотношении очищаемой и рециркуляцно очистки по схеме без рециркуляции выше.

Очистка сточных вод от ЭПОУ осуществляется по аналогичной схене, однако для достижения концентрации нефтепродуктов схеме, однако для достижения кобхдимо добавление коагулянпосле флотации тов хлорида железа, сульфата железа или сульфата алюминия тов - хлорида жетеза, сульфата железа

Рис. 27. Флотатор с врашающимся распределителем: 1- подача на очистку; 2 - прнемное отделенне диетталинаяя камера); 3 - флота

в количестве до $50 \mathrm{~m} / \mathrm{a}$. Объем шлама составляет около 5% от васхода сточной воды. Конструкция флотационной камеры для очистки стоков на НПЗ, разработанная ЦНИИ МПС (рис. 27), представляет собой радиальный отстойник со встроенной в центпредставляет собой прнемной частью, оборудованной вращающимся водораспрере прнемной
делителем.

По даниым автора конструкци, такое равоределенне обеспечивает спокойный гидравлический режим и улучшает чсловия фллтации $[18,52]$.

В большей степени загрязнены нефтепродуктами стоки железнодорожных промывочно-проларочньх станций, на которых производится обработка цистерн из-под сырой нефти (см. табл. 7).

Рис 28. Схема флотационной установки для очнстки стоков промы-вочно-пропарочных станщий:

Нефть в этих стоках отличается высокой эмутьтированностью, так как со стенок цнстерн она смывается сильными ударами водяных струй. Д.тя лучшей очнстки цнстерн в промывочную воду иногда приходится добавлять моющие средства. Несмотря на небольшое количество стоков ($500-700$ м $^{3} / с у т$), они требуют тщательной очнстки. Большая работа по очистке таких сточных вод была проделана в ЦНИИ МПС [17, 18], где разработан делый ряд конструкций флотационных установок небольшой производительностн, которые можно использовать и для очистки других категорий сточных вод. Эти установки могут быть заводского изготовления.

На рис. 28 показана флотацнонная установка производитель ностью $30 \mathrm{~m}^{3} / 4$. Қонструктивными особенностями этой установки являются: оборудование напорного бака поплавковым краном для автоматического выпуска избыточного воздуха, размещение в приемной части флотационной камеры пружинного вылускного клапана, регулирующего давление в напорной линии и баке, зациита воздушного эжектора от засорения с помощьн сетчатого фильтра. Продолжительность очистки $18-20$ мин. Содержание нефтн при добавлении коагулянта (100 - 200 ме/л глннозема) снижается со $150-120$ мг/А до $26-25$ мг/лt, механические приме-

си удаляются на 85.90%. Без коагутяции зффект очнстки значительно хуже.
Дальнейшее совершенствование конструкпий флотационных чстановок небольшой пронзводнтельности привело к созданию двухступенчатой флотационной установки (рис, 29). В основу ее

Рис. 29. Схема двухступенчатой флотационной установкн

рез три флотацнонных отдетения и отстойную камеру. Флотаци онные отделения рассчитываются на 4-5 миғ пребывания стоков, в каждое отделение подается 15 - 20% рециркупяцнонного раскода. Общая продолжнтельность обработки стоков-2025 мин. На установке успешно очнщали сточн ые воды, содержа-

Рнс. 30. Схема мнооокамерной флотационной установки:

пие до 5700 ме/л нефти. После камеры грубой очистки нефти оставалось $100-300$ ме/л, после трехкратной флотации - $50-$ $100 \mathrm{me} / \Omega$, а при добавлении коагулянта $(100-150$ мс $/ \lambda$) $-20-$ $40 \mathrm{me} / \mathrm{s}$.

В технологическую схему очистки больших количеств балластных вод танкеров флотация включается как один из основных элементов. Наилучщей конструкцией флотационной установки явилась камера с врашающимся водораспределителем $[18,55]$, которая может обеспечить остаточные концентрации нефти менее 20 мг/ Ω даже без нефтеловушек.
Нефтесодержащие сточные воды пробовали очищать также электрофлотацией.
По данным И. В. Герасимова [6], при очистке общего стока нефтеперерабатываюцего завода электрофлотацией в несколько ступеней остаточное содержание нефтепродуктов составило 10 нг/A, при начальной концентрации - 200 ид/ $\boldsymbol{\lambda}$. Расход электро10 нг/A, при начальной концентрации - 200 ме/ A. Расход электро-
эпергии при этом составил $0,28-0,55$ көт на 1 м \boldsymbol{n}^{3} очищенной воды, а расход железа - 25% от количества удаленных нефтепроды, а ра
дуктов.
дуктов.
Опыты по применению электрофлатационного способа для очистки сточных вод на Горьковском нефтемаслозаводе дали следуюцие результаты. В одноступенчатом флотаторе с железны-

ми электродами достнгалось снижение колнчества нефтепродук тов в общем стоке с 376 ма л до 23 на/八 при расхаде электроэнергии $0,6-0,9$ кат на 1 м 2, а в стоке нз маслоочистного цеха с 1750 не! д до 23-215 не/л при расходе электроэнергии $2-4,8$ кот на 1 м \boldsymbol{m}^{3}.

Применение алюминиевых электродов увеличивало расход электроэнергии в несколько раз.

Сточные воды вискозного производства

Нсходным сырьем для потучения внскозного волокна являет ся древесная деллюлоза. В процессе ее переработки нспользуется целый ряд химических материатов: едкнй натрий, сероуглерод, серная кислота, сульфат цинка, красители, замаслнватели я др. Қроме того, в результате химического взаимодействия образуются дополнительно различные химические соедннения: сульфат натрия, сероводород, сера, сернистый цинк и целый ряд других серннстых н карбонатных соединений. Во өремя различных операций, связанных с полччением и отделкой волокна, все или часть указанных вешеств попадает в каналиэацию.
Во избежание взаимодействия отдельных ингредиентов, вхо-
Во избежанне взаных состав вод, сопровождающегося выделением дящих в состав сточных вод, сопровожд твердой фазы, сточные взрывоопасных и отравляюцих газов клн твердои фамостоятельводы отводятся на очистные сооружения по трем сой (содержа ным сетям: кислой (содержащей кнслоты), щелочной (содержащей щелочи) и вискозной (содержащей отходы вора).
Государственный институт проектирования предприятнй искусственного волокна подсчитал сброс загрязнений в сточные воды (табл. 6).

Таблица 6

Загрязисния	Стокм		
	янслые	щелочные	змсхозные
Едкий натрии	275-426	66-126	12-22
Серная кислота	$275-426$ $566-1140$	0-280	-
Сульфат натрия	$566-1140$ $0-100$	0-280	-
Сульфат цинка	${ }_{4-23}$	0-5	4-10
Сероуглерод	$0-3$	$0-0,25$	
Альфацеллюлоза	-		11-25
Гемкцеллюлоза	12-29	0-14	2-4
Краситель	$0-2,5$	--10	0-2
Замасливатель	$0-0,4$	$0-10$	0-2

Примечание. Количество кислых стоков $370-600 \boldsymbol{\mu}^{3} / \tau$, щелочных Примечание
$10-180$, внскозных $15-40$ Коли

Как видно из табпицы, количество сточных вод и загрязнений и их распределение по категориям стоков нзменянтся в широ ких пределах в зависимости от вида продчкции и от соотнюшения видов, выпускаемых одним предприятием, что усложняет технологию очистки сточных вод, требуя в каждом отцельном стучае особого подхода к проблеме их обработки.

Существуюшие методы и технология очистки сточных вод вис. суого ноизводства, несмотря на значитепьный обтем соору. жений (время пребывания в вискозных атстойниках и отстойнижений (время пребывания в вискозных отстоиннках и отстоинн ках-нейтрализаторах до 36 ч) имеют ряд недостатков, что сказывается на эффекте очистки прометоков и зачастую приводит
к сбросу в водоем сточных вод, не удовлетворяющих требованик сбросу в водоем сточных вод, не удовлет
ям саннтарных и рыбохозяйственных норы.
В поисках более эффективных, чем простое отстаивание, мето-
дов осветления вискозных сточтых вод были продепаны опыты по флотацнонной очистке их. Опыты показали, что выдетение взвешенных веществ методом флотации происходит тораздо быстрее, чем при отстаивании с более высоким зффектом осветтения

Рис. 31. Схема экспериментальной флотационной установкн 1- камера реакции; 2 - камера нейталиаацян; з-подача извести; сброс избыточнои воды; 8 - подача воды ва перемешнвание с известью

Экспериментальная фпотационная установка, построенная на очистных сооруженнях Каменского комбината искусственного волокна (рис. З1), имела производительность $15 \mathrm{~m}^{3} / 4$ при времени пребывания стоков в отстойной части 22,5 мик.

Осноннын элементами ее являются: подводящие каналы, ка нера реакции, камера нейтрализации, флотапионная камера и насосвві : וгрегат
Ф.тотииюнной очистке в процессе нселедований подвергались вискоээьи сток, тодкнсленный частью кислого стока; общий сме шанньј сток (без кзвесткования) и общий смешанный сток с предварнтельныс известкованнем его.

Рабога устанонки пронсходит следующим образом.
Сточные воды поступают в камеру реакции, назначение кото ой для коагутяцин вискозного раствора н образования гидро гелтолозных хлопьев
При очистве стоков с известкованием на выходе из камеры риии вволится нзвестковое молоко в количестве, обеспечива юемем $\mathrm{pH}=9-10$ или избыточную щелочность $190-240$ мг/л. Из ющем $p \mathrm{H}=$ нй найтации сточные воды забираютст насосом, на
 саса воздуха, и перекачиваются в приемную часть флотацнонной камеры
Здесь поступившнй через воздушный патрубок и растворив шийся в корпусе насоса при давлении 2,5 ати воздух при резком падении давления до атмосферното выделяется в виде микропу мрьков которые прилипая к хлопьям гидратцеллюлозы и дру
 гим нерастворимым части
удержание на поверхности.

Вводить флотореагенты при очистке вискозных сточных вод

 не нужно, так как в самих сточных водах они присутствуют в до статочном количестве в виде ксантогенатов, тритиокарбонатов минеральных масел, олеиновой кислоты илн других веществ с высокой поверхностной активностью, попадающих в сточные воды при замасливании волокна, что обеспечнвает флотацию не растворенных веществ с различными своиствами.Особую роль в процессе флотации играют гидратцеллюлозные топья, сорбирующие на своей поверхности не только пузырьки оодуха но и метиие частицы минерального происхождения, воздуха, но и мелкне частй
Затем сточные воды поступают в отстойную часть флотацион Зай камеры, где происходит окончательное разделение твердой и жидкой фаз: осветленная вода отводится снизу, а шлам соби рается и уплотняется на поверхности. Влажность его может быть доведена до $92-90 \%$, однако при влажности менее 95% шлам не текуч и перемещать его по трубам или лоткам затруднитепьно
В результате производственных исследовании получены реко мендации по проектированию флотационных установок для очис тки сточных вод вискозного произволства:

1. В сточных водах, поступающих на очистку, должно быть обеспечено содержание свободной серной кислоты не ниже определенной величины, нсходя из которой назначается время пребы вания стоков в камере реакции

Рекомені:-мое содержание кнілоты (40[я 500 ма/八) обеспечивает быстр: и полнчю коагчлынию вискныого раствора при незначительном временн пребываня стоков в камере реакдии незначит ло ряду причнн не удается поддержняать такую концентрацию кислоты, поэтому содержанне свободной серной кислоты в общем смешанном стоке должно быть не менее 200 нс/А

Если баланс кислоты и щелочи в смешанном стоке не обеспецит такое содержные кислоты, то необходимо производить подкисление смеси стоиыт вод сернои кнслотои. Поддержание кис-
 мощью усреднителей или буферных резервуаров кислого стока или более равномерным сбросом кнслоты и щелочи в канализацию.

Перед флотацией следует задержать крупные механические прммеси - волокна скоагулировавшейся комками вискозы п т. п., поэтому в технотогическую схему очистки стоков должны быть включены решетки
2. Время пребывания сточных вод с температурой $25-30^{\circ} \mathrm{C}$ в намере реакцин назначается в зависимости от миннмального содержання свободной серной кнслоты в смеси сточных вод:

$$
\begin{aligned}
& \text { Содержание сернон кисто- } \\
& \text { ты, мг/д } \\
& \text { Воемя доебквания мия } \cdot 15-20
\end{aligned}
$$

При уменьшении температуры смеси до $20^{\circ} \mathrm{C}$ его необходимо увеличивать на 15-20\%
Время пребывания сточных вод в камере нейтрализации 10 мин.
3. В камерах реакции и нейтализации сточные воды должны хорошо перемешиваться, что достнгается:
устройством перегородок;
установкой механических мешалок;
продувкой воздухом через фильтросные плиты или дырчатые трубы ($1-2$ м 3 воздуха на $1 \boldsymbol{m}^{3}$ сточных вод) .
Последнее наиболее рационально, так как обеспечивает не только хорошее перемешивание стоков, но и способствует окислительным процессам в сточных водах, снижая дефицит кисло рода в них
Қамеры реакции и нейтрализации следует проектировать раз деленными на несколько (не менее двух) самостоятельных отлетений, которые можно выключать из работы для осмотра и очнсткн.
4. При самотечной высотной схеме очистных сооружений насо сы, устанавливаемые для подачи сточных вод из камер реакции или нейтрализации в приемную часть флотационной камеры, полжны обеспечить перекачку 75% стоков в период их макси мального притока при давлении 2,5 ати с тем, чтобы остальные 25% сточных вол поступали в приемную часть самотеком, для

чего устранвают соответствчющий перепуск между камерой реакции или нейтрализации и флотационной камерой.

Если же в соответствии с высотной схемой расположения сооружений требуется перекачка стоков на более высокую отметку, то при равномерной работе насосов камерам реакцин и нейтрализации могут быть приданы функшии регулирчюших емкостей, что соответственно отразится на их объеме; при неравномерной же подаче потребчется регулирование путем включення н вык,пючения насосов

Независимо от высоты требуемого подъема стоков давление создаваемое насосами, должно быть не менее 2,5 аты, чтобы был обеспечен необходимый удельный расход воздуха.
5. Флотационная камера делится вертикальиой перегородкои на две части - приемную, куда перекачиваются стоки, и отстойную, где происходит их осветление.

Объем приемной части определяется нз условнй размещения в ней вгускных устройств, обеспечнваюцнх равномерное распре деление воды по ширине камеры и перемешивание сточных вод подаваемых насосами, с поступающими самотеком. Ориентиро вочно объем приемной части может быть принят из расчета тя тиминутного пребывання в ней сточных вод
Время пребывания сточных вод в отстоиной части при очистк вискозного или общего неизвесткованного стока должно прини маться $90-25$ мин при очистке общего известкованного стока 27 иин K потученному таким образом объему отстойно части должен быть прибавлен объем, соответствующий количест ву образуюшегося шлама при принятом перноде его накоптения (см. ниже).
На рис. 32 представлена схема флотационной камеры. Реко мендуемые величины (размеры) отдельных элементов флотаии онной камеры в соответствии с принятыми на рис. 5 обозначе ниями:

Н- глубина отстойной части, 2-2,5 м
b - ширина камеры, 2-3 m;
$L: b$ - отношение длины к ширине, $4: 6$;
$h_{2}-H$ - высота борта камеры над уровнем воды, 0,2-0,3 м H_{2} - h_{4} - плубина погружения перегородки, \boldsymbol{M}; должна обеспечи вать скорость протекания воды над перегородкой 0,5 0,7 м/сек
H - h_{1} - глубина погружения борта штамоотводящего лотка, м должна равняться $1 / 3$ толщины накопленного шлама моменту его сброса;
$H-h_{3}$ - глубина погружения скребка, $\boldsymbol{\mu}$; должна равняться толщины накопленного шлама к моменту его сороса.
Скорость перемещения скребков должна быть равна скорос диижеиия шлама над бортом шламоотводящего лотка пр принятой продолжительности сброса шлама ($10-15$ мин)
При длине камеры более 10 м рекомендуется предусматриват

подачу частн (примерно $15-20 \%$) иочной жидкости, насышенной воздухом, пепосредственно в оть:дйную часть камеры по I2 дололнительным напорным линиям. Это позволит накаптивать шлам более равномерным слоем и обеспечит одинаковую насыщенность его воадухом ло длине камеры
6. Объем образующегося штама и его втажность определяются в зависимости от начатьного содержания взвешенных ве-

Рис. 32. Конструктняная схема горизонтальной флотационной камеры:
 8 - регуяятор уровня нолн

ществ и пернода ето накопления по графикам, представленным на рнс. $33, a, 6$ или по формулам (1) - (4)
При транспортировании шлама на дальнейшую обработку са мотеком период его накопления на поверхности отстойной части следует принимать таким, чтобы влажность шлама находилась в пределах 94,3-94,7\%
7. При очистке сточных вод вискозного пронзводства флотацией достигается следующий эффект
Вэвешенные вещества аадерживаются при очистке вискоз ного стока на $98,0 \%$, общего - на 96%, общего известкован ного - на $96,5 \%$. В том числе гидратцеллюлозные компонен ты задерживаются на $98,3 \%$, при очнстке общего стока - на $97,5 \%$, общего известкованного - на $97,2 \%$.

Вынос взвешенных вешеств без учета гидроокнси цинка мо. жет быть принят в соответствии с табл. 7;

Abstract

В соответс1:ии с приведенными рекомендациями СоюзводокаВалпроеком бытн запроектированы очистные сооружепия Красноярского завола искхственного волокна. Проведенные пуск-наладочные работы выявили некоторые конструктивные неды атки флотацнонных камер, связанные в основном с бопьшой : длтиной (35,8 м при ширине 2,8 м). Отмечалось образование в противололожной от впуска жидкостн части камеры очень легкого, разрушающегося, особенно при работе скребков, шлама, что ухудшапо эффект очисткн [32]. Кроме того. в начале отстойной части создавалась значительная водоворотная область, мешающая образованию и существованню агреротная область, мешаюыщая В связи с этим наладчиками предложено внести изменения в конструкцию камер, сущность которых заключается в распределении подачи сточнон жидкости на флота- цик по всей длине фтотокамеры. Необходимо однако отметить, что при проектировании флотокамер учитывалась возможность возникновения упомянутых нежелательных явлений. Для их предотвращения предуснатривапась подача части сточной жидкости ат насосов по спецнальным трубопроводам прямо в отстойные отделения камер. Однако в самом начале пуско-наладочных работ эти трубопроводы быти ликвидированы и влияние такой подачи стоков на очястку вернться к этой схеме только в другом, более совершенном конструктивном исполнении ном конструктии работы очистных сооружений было установлеПри изучении работы очистных сооруфект флотации загрязнено также отрицательное влияние ннй значнтельного удаления флотационных камер от камер реакции н нейтрализации (около $5 \mathrm{kм}$). Во время движения по трубопроводу теряется флотационная активность гидратцеллюдозных хлольев и гидратов окисей металтов, образующихся в камерах реакции и нейтрализации, что ухудшает процесс прилипания их к пузырькам воздуха. Добавление полиакриламида непаня посредственно перед флотацией в дозах 0,5-1 ме/л в данном случае улучнает флотируемость загрязнений, Возможности применения флотапия при очнстке сточных вод вчскозного производства не ограничиваются очисткой вискозного или общего стоков.

Исследования, проводившиеся на Сокальском заводе искусст венного волокна, показали, что флотационные установки могут найти место в технологических схемах по регенерации цинка из кнслых цинкосодержаших стоков [40].

Разработанный в Украинском институте инженеров водного озяйства электролитический способ извлечения цинка из осадка кислого цинкосодержашего стока проверялся на комплексе экс периментальных полупроизводственных установок, моделируюпериментальных полупроизводственных устанкви, миносодержащих полную технологическую схему как очнстки цинкосодержа щего стока, так и обработки осадка и регенерации из него цин- ка. Средняя производительность экспериментального комплекса ка. Сре $5 \mathrm{~m}^{3} / \mathbf{4}$.

На основании проведенных лаборатопиих и получроизводея енньх нсследований опредетены оптим: \therefore ные технологичеси: ежимы и разработана технологическая схема (рнс. 35) очнстки иислых шиносодержащих стоков с электролитической регенерапией цинка из осадка. Кислые цинкоппяржаиие стоки поступают в усреднитель, куда подается чаю". נцелочного реагента для

Рис. 35. Схема очисткн кислых носодержащих стоков с электролитической регенерацией цинкв

 ноя: 6-камеры флотапия; 7 - пенополнстирольные фильррн: 8-безервуар

облегчения его последующей точной дозировки леред смесителем. Доза извести или соды должна обеспечивать $\mathrm{pH}=9-10$. Из иеитрализатора сточные воды насосями, располагаемыми в насосной станиии, направляются во флотационные камеры. Насыщение стоков воваравл осуществляется при давленин 3,5 ати в щение стоков воздухом осуществляется при давлия $1,5-2$ мин. Продолжительность пребывания стоков во флотокамерах 35 мин. Осветленный сток направляется на пенополистирольные фильтры с высотой загрузки 1,2 м (скорость фильтрации $5 \mathrm{~m} / \mathrm{h}$, интенсивность промывки 7 д/сек- и², продолжительность промывки 3-4 мин), а затем, на нонообменные фитьтры для доочнстки от цинка
Шлам влажностью 92 - 93%, содержащий цинк в вице гидроши направляется в сборник Содержащийся в шламе цинк снова переводится в растворенное состояние в баке приготовлепия нинката раствором едкого натра. Объем добавляемого растпия цинката раствором едкоко ния устанавливается из условия, чтобы концентрация цинка в смесн была не менее 8-10 $2 / \lambda$, а концентрация щело-

- 200 z/九 Ла:ьнейшая оперя ия состоит в осветлении раствои - 200 с/л. Да. ра цннката, т. е. удался электрофлотация с нерастворимыми Для этого нспользуется электрофлотыцня с нерастворимыми электродами. Продолжительнасть электрофлотацин 30 мин, плот ность тока на этектродах - 800 ал $\boldsymbol{\mu}^{2}$ прн напряжении 6-8 s. Вторичный штам в объеме 20-30\% от объема смеси удаляется в шлацонакопитель, а очищенный пинкатный раствоп на электропиз. Зе счет возврата цинка н производство себ́естонмость оии стки $1 \boldsymbol{m}^{3}$ стока снижастся в $3-5$ рдз.

Стонные воды кожевенных заводов

Сырьем для произволства различных видов кож служат шку. в процессе их обработки упот
 ких как серная кислота, известь, катьнинированная сода, сульрат ал серная кислота, известь, каныния вещества - смачиватели керосин мети, поверхносто-акокы, синтаны и другие, которые попадают в сточные воды и сбрасываются в канализацию. Кроме того, в сточные воды переходят и химические компоненты самих икур: белки, жиры и жироподобные вешества, некоторые минератьине вещества содержащие натрии, калии, кальции и дру нералыне вс
ние элементь
В зависимости от местных условий и принятой технологической схемы очнстки сточных вод, они могут отводиться либо единой сетью (общий сток), либо из общего стока могут выделяться кислые дубильные, содержащие в значитепьным концентрациях хром (от операций дубления и последующей промывки) н щелоч ные зольные (от операций золения и последующих промывок). В оставнуюся часть общего стока входят стоки от операции от моки, обеззоливания, неитрализации, обезжирнвания, жирования, крашения и промывок, завершаюощих каждую из этнх опе раиий. Реакция этого стока слабощелочная.
Удельное количество сточных вод в расчете на $1000 \partial \boldsymbol{\mu}^{2}$ готовой продукции составляет от 2 до $9,5 \mathrm{~m}^{3}$, меньшне значения характерны для выпуска жестких кож, большие - для хромовых.

Количество сточных вод, образующихся при некоторых отдельных операциях, и основные показатели загрязненности их приведены в табл. 9, составленной по данным исследовании на кожевенном заводе им. Ильича в Бердичеве, на заводах ленинград ского кожобъединения и по ряду литературных данных $[26,69]$

Состав загрязнении сточных вод и их концентрацим широко изменяются, что усложняет выбор способов очистки и технологисесих схем очистних соружений и их әкстлуатацию Большииство исследователей, изучавших различные очистные сооружения кожевенных заводов, отмечали суцестренные недостатки в их работе и, соответственно, невысокий эффект очистки. Поэто-

	Cras		
	аищня	өэльшы	хромосодержапцніл
- 'ржание в во- '. t : вэвешенных нсществ плотног: остатка мрома сульфидов жира СПАВ фенола [2H KПK, 2/A $Б П K_{5}, a_{l} / A$			
	2,0-12,0	0,8-5,5	0,5-4.5
	4, $0-11,5$	9,5-15,0	$22,0-170,0$ $0,1-5,3$
	0,05-0,3	0, 0,0	
	$0,05-0,3$	0,15-2,0	0,06-0,25
	0,2-0,8	0,0-0,6	0,16-0,25
	$0,0-75,0$ $0,0-40$	0,0	
	8,5-11,5	9-12	3-6,5
	2,5-3,2		
	0,7-1,5	0,1-2,0	0,5-4,5

му исследования в этой области продолжаются, а разработка новых методов и технологических схем очистки продолжает оста вых методов и технологических
В последние годы много внимания уделялось изученню воз можности использования фпотации при очнстке сточных вод кожевенных заводов $[50,51,68]$. Наличие в стоках ПАВ, жира и жироподобных веществ позволяет применять данный метод. По отношению же к очистке стоков от самих ПАВ, он, в данном случае, пока остается единственно приемлемым. Поэтому не спучайно, что одна ия перьых технолагических схем с флотациеи, саие, минал для ножзаводов в Московском инженерно-строипредложен дит [23, 24] рассматривает фтоташию, вервую тельном институте [23, 24] рассматривает флотацию, в первую очередь, как метод очистки стоков от ПАВ. Схема эта представлена на рис. З6. В качестве комментария к данной схеме следует сказать, что «свежие» стоки некоторых кожзаводов, несмотря на значительное содержание ПАВ, при продувке воздухом пенятся плохо или совсем не вспениваются. Обильное вспенивание, непоходимое для удаления ПАВ, начинается только после выдерживания стоков в течение 12 - 20 и. Интенсивная аэрация (2040 m $^{3} \mu^{3} \cdot 4$) в этот период приолижает начало пенообразования. Позтому при реализации данной схемы нельзя сводить продол--эыт житсльность усреднендя
В более широком плане изучались возможности применения Влотации при очистве сточных вод кожевенных заводов в УкраФлотации при очистве сточных вод кожевенных заводов в Новочеркасском политехническом институте [50, 51]. Исследоваџы напорный и безнапорный способы флотации, импеллерная и электрофлотация на различных этапах абработки сточных вод и в различных вариантах технологических схем.

Қак показдли опыты, флотация при очнстке сточных вод кожаводог может применяться для ачистав; осветления и очнстки дых компонентов - шерсти, жнра, общего стока в сочетании с обработкои его коатупираций, наприогентами: токальной оцистки стоков отілельных операции, намр

Рис. 36. Технологниеская схема очистки сточных вод кажевенных заводов, Рис. 36. Технологниеская
разааоотанная в МИСИ:
разработанная в МИСС:

 10- регенератор; 12 - ээел ликви.
34 - осадок на мловме пломадки.

лер для ачистки соросных хромовых соков свиного хрома нли мер, пля ачнсткн соросных хромовых соко хрома (отходные хросмесн хромовых соков свиноглотацией очншаются плохо), в том мовые соки ялового хрома фло (подщелачивание хромосодержащих стоков с последуюшей флотациен гидроовира.
очистки стоков отмоки ио аказались напорная я безнапорная, а
Наиболее приемлемыми оказалисв напорная сочетанин с электрокоагутакже электрофлотация, особенно в сочия а ляцией.

Все исследования выполнялись сначала на лаборах конструкВсе нсследованияводственных установках различных конструк иий и производительности.

Так, на кожевенном заводе им. Ильича в г. Бердичеве под по-
Так, на кожевенном заводе им. һю установку была выделена лчпроизводственную флотационную на ней изучатась возможность часть действующей жиротовки. на ней ий б безнапорной флотаочистки стока от шерсти и жира напорной иезультатов исследовацией. Последняя на основании анализа ринные исследования быний показала свою приемлемость. Аналовяях на Јенинградском ли проведены в пронзводствнитерна где один из действуюцих кожевенном заводе им. Коминтерна, где один из до установку. отстойннков был переоборудован во флот 10 Технологические Результаты исследований прнведены в табл. параметры, при которых определялась эффективность параметры, при которых $\begin{gathered}\text { установок на кожевенных заводах, приведены в табл. } 11 .\end{gathered}$

66

Tаблниа 10
безнапорнон

Tаблина 11
Технологические параметры работы установок на кожевениых заводах

	Еднница измере-	Кожевенные заволы	
Нанхевованне поквзателей			Лениятрадския им. Комннтерна
Проняодительность установкй	$M^{3}{ }^{3} 4$	5-7	30-45
Проивводительность установка Количество воздуха, подавае-	Проц. or pac-	2	3 (при шасыщенни 50% cтosa)
мого во насоса Продолжительность пребывания во флотапионной камере	$\underbrace{\text { кин }}_{\text {хода вады }}$	20	50, \% стока) 30

Влажность и количество шлама, всплывающего на поверх колия накопления. Так, ченость, зависят от продолжнтелиния влажность шлама составляет ез 60 мин после начала флотаци 8% от количества обработан-4- 95%, а объем достигает $0,7-0,8 \%$ от колнчесость снижается ной воды. Через 8 ч накопления шлама его влажносиеская трансto 84%, а объем составляет $0,3-0,35$
:ортировка такого шлама невозможна. В $1 \mathrm{~m}^{3}$ шлама влажностью 84% содержится $10-20$ ке пием сжи-$15-50$ кд жира, что позволяет ликвидировать извлекать жир и.ти :ания, а при необходимости из него можноия из шерсть.

На дно флотационной камеры выпадает осадок, олиества очирого после 8 ч накопления составляе 95 . Такие параметры осадка щенной воды при влажности 94 рй получаются при предварительнои «трубои» он отстаивания). Оса-
山

док содержнт органическне и минеральные вещества, в том чи ле 15-20\% задержанного на установке жира, он подвнжен и ми жет транспортироваться по трубам.
На рис. 37 показана принципиальная конструкцня флотацион ного шерстежироуавливателя производительпостью $150 \mathrm{~m} 3 / 4$

Ркс. 37 Флотационный шерстежироулавливатель (для ко

 осадмa:
кер дли:
ocanka.

При вывозе штама автотраиспортом, сжигании или использова в нии его необходим оункер. При частом удалении ($1-2$ раза в час) он может транспортироваться самотеком по тои кожевенном что и осадок. Внедрение безнапорнои флотации на кожеветы
заводе нм. Қоминтерна позволило вдвое сократить затраты на вывозку осадка.

Непосредственная флотационная обработка сточных вод (см. табл. 10) кожевенных заводов обеспечивает зиачительное удаление нз них только жнра и шерсти. Концентрация остальных загрязнений остается достаточно большой, что связано с содержа68

пием в стоках снльноднспергированных, коллоидальных и растворенных органических веществ, успешное удаленне которых требует изменения их агрегатнвной структуры. Нарушение агрегативной устойчнвости этнх веществ, в том чиспе и белка, достидется реагентной обработвой стотных вод или электрохимичес-

Рис. 38. Технологическая схема двухступенчатой флотационной очистки сточных вод кожзаводов:

кой (электрокоагуляция). Реагентная обработка стоков эаключается в подкислении стоков серной кислотои с последующим подщелачиванием, продувке стоков дымовыми газами для сннжения рН (способ недостаточно аргументирован экспериментально), обработке стоков различными коагулянтами.
но), обработке стоков различными Исследования по обраюотке стоков кончатом фтотационном осной кислотой и известью при двухтуерасском политехническом ветлении их проводились в Новочеркасском побияинияния. В одинституте, на предприятиях Ростовского кожые воды, предвариной из рекомендуемых схем (рис. 38), сточные воды, предваригельно освобожденные от крупных механических
 и выдувания образующегося сероводорода. Продолжительност аэрации 20 мин, удельный расход воздуха 10 м на 1 м сточных вод. Подкисление вызывает интенсивное хлопьеобразование в сточных водах вследствие коагуляции белковых соединений. Об сточных водах вовниеся хлопья отделяются на первой степени флотации разовавшмеся хлодусмотрена напорная флотация с использованием рабочей рециркулирующей жидкости). Насыщается воздухом под давлерециркулирующей жидкости). Насыш
нием 3 aru. Рециркуляцинное отношение $1: 2$. Продолжитель-

ность пребывания стоков в расчете на суммарный расход стоков и рабочей жидкостн - I я.

Остаточное содержание взвешенных веществ $90-100$ мс/а. снижение хрома - на 23, ПАВ - на 50 и сульфидов - на 30\% абеспечивает 1 -я ступень флотацин. Последующее подщелачивание известью до $\mathrm{pH}=8,5-9,5$ производится для нейтрализацни стока, а также для перевода хрома в гидроокись н его последующего выделения на 2-й ступени флотации, которая работает без рабочей жидкости. Продолжительность пребыванкя стоков1 ч. Эффективность очистки сточных вад двухступенчатой флотацией с подкислением и подщелачнванием по данным работы эксцией с подкислением и подй
периментальной установки приводится в табл. 12.

Таблица 12
Снижение концентраций загрязненнй при очистке стоков кожевенного завода по схеме НПи

ษакменсвание показатележ	На поступления	После 1-A cryпeни флотацнн	Пocise 2-月 ступе ни флотацни
Содержание в воде, м $\boldsymbol{2} / \boldsymbol{\mu}$:			
взвешенных веществ	1986	101	15
хрома	110	83.5	4.2
сульфидов	155,9	17,3	13.8
жиров	187	15	13.9
$\mathrm{pH}^{\text {ПAB }}$	48,6	25,3	8.69.
$\mathrm{pH}_{\mathrm{b} \mathrm{KK}_{5}, \mu 2 / \Lambda}$	8,67 1015	4.46 448	8,69 289

Как видно из таблицы, двухступенчатая флотация может обеспечить достаточно высокий эффект очистки сточных вод кожевенного завода по всем показателям. Количество шлама, обравенного завода пй всем полия флотации при 4-6-часовом накоплезующегося на 1 -и ступени флотациии при $4-$-часовом накопле-
нии его, составляет $3,8-5 \%$ от количества очищенной жидкости, нии его, составляет $3,8-5 \%$ от количества очищенной жидкости,
а влажность - $93,1-95,4 \%$. На 2 -й ступени количество шлама а влажность-93,1-95,4\%. На 2 -й ступени количество шлама
после 4 ч накопления составляет $1,64-2,2 \%$ прн влажности после 4 ч на
$95,8-96,9 \%$
Другая технологическая схема очистки сточных вод кожевенных заводов с применением коагуляции и флотации разработана в Украинском институте инженеров водного хозяйства. В основной части эта схема использована при проектировании очистных сооружений берднчевского кожевенного завода им. Мльича Ки евским ГПИ-5. Технологическая схема (рис. 39) предусматривает отдельную очистку общего стока завода и совместную биовает отдельную очистку общего стока завода и совместную био*
логическую очистку с городскими стоками. Кроме того, схемой логическую очистку с городскими стоками. Қроме того, схемои
предусматривается возможность специальной доочистки части предусматривается возможность специальной доочистки части
биологически очищенных стоков с направлением их на техничесбиологически очищ
кие нужды завода.
кие нужды завода.
Сточные воды кожевенного завода при проходе через решетки, песколовки или отстойники, рассчитанные на их $15-20$-минут

ное пребивание, выдетяют тяжелис примеси и затем направля ются в вертикальнне отстойннки, юte отетаиваются в течение З4 у. В отстойниках задерживается основная масса нерастворенных примесей, что позволяет уменынить дозу коагулянта, необ ходимую для полного осветления стоков. Осадок из отстойниов

Рис 39 Технологическая схеыа очнстки сгочных вод кожевенного завода флоРнс. 39. Технологическая схеша очнстки соочных вод кожевенного завода таинея
камн:

количестве 5-10\% от объема обрабатываемых стоков с влаж95% ностью 95% направляется в шламон
ническое обезвоживание его и вывоз.
В частично осветленную жидкость вводятся растворы орентирокислого железа и извести. Доза сернокислого железа 100 ме/А на вочно может быть определена в 300 ме/ $\boldsymbol{\mu}_{\text {, плю }}$ отстаивания взвесей. каждые $500-600$ мә/ Λ, оставшихся после ола соков по $\mathrm{pH}=$ Доза извести принимается из расчета доведения стоков до рН$=10$ (примерно на $200-300$ мс/л больше дозы сернокислого же леза, считая на СаО).

После смешения с реагентами стоки поступают на флотационПосле смешения с реагентами стакорная). Рециркуляционная ную очистку (предусматривалия жндкость (коэффициент рециркуляци-1) Пати. Прннимая менышее хом в течение 2 мин под давлением 4 давление насышения, необходимо увеличивать коэфт рециркуляциркуляции (при давлении 2,5-3 ати коэффнцнент ции следует принимать 2). Продолжитетьность пресывания смеся во флотационной камере 1 .

ббъем штама, соответствуюший втажности 94-95\%, т. е. когда шлам еще удаляется самотеком, может быть определен по с.пепчющей упрщенной формуле (в прод от объема обработанной воды)

$$
\begin{equation*}
W=1,5 C, \tag{40}
\end{equation*}
$$

где C - концентрацня нерастворенных примесей, з/л. Для рассматриваемого случая

$$
\begin{equation*}
C=B+K+\frac{(1+a) H}{2}, \tag{41}
\end{equation*}
$$

где B - концентрация взвеси после отстаивания, $z / \boldsymbol{\beta}$;
K - концептрация гидроокисей жетеза и хрома, $2 / \lambda$;
μ - доза $\mathrm{CaO}, 2 / \lambda ;$
а - содержание активной части в извести в дотях единниы.
После флотации стоки кожевенного завода поступают в усред-нитель-аэратор, где смешиваются с городскими стоками и куда награв.тяется весь избыточный активный ил иэ вторичных отстойников, а затем во флотационный биокоагулятор, принциі работы которого описан выше, и в аэротенки.
Часть стоков, прошелших бнологическую очнстку, подвергаетдопомнитетьнй биодогической очистке на биофильтрах, скорых фитьтрах, обезаараживается и направляется снова на завод как техническая вода
Данные эффективности очнстки по этой схеме представлены в табл. 13 и определены при работе экспернментатьных пронзводственных установок на очистных сооружениях Бердичевского кожзавода.

Таблица 13
Снижение концентации затрязнений при очистке стоков кожевеиного завода по схеме Уиивх

Нанменованне локазателей	Характерные показатели стоков, мг/я					
	$\underset{\substack{\text { над } \\ \text { входе }}}{ }$	nocse: отста нвания	после ф..ьти цан	прсле сме шения со города	$\begin{aligned} & \text { носле } \\ & \text { Gиокоагу- } \\ & \text { ляцни-фыл)- } \\ & \text { тации } \end{aligned}$	
Содержание в воде:						
взвешеныых веществ	3790	1895	200	301	140	
хрома	160	128	5	5	$\frac{1,5}{}$	0.5
сульфндов	1311	106	15	5		0
жиров	1360	680 137	136	5	8	5
	171 2000	137 1600	27 800	100	${ }_{2}^{870}$	${ }_{20}$

Примечание Величнна рН после флотации сточнык вод составляла ! 0 , во всех
Сравнивая результаты флотационной очистки стоков в табл. 12 и 13 , полученные разными исследователями в различных условиях, следует отметить, во-первых, что эти результаты дают до-
 разииие в исходных концентрапиях загрязненнй и, во-вторых, рто реагентиая обработия стонов данных прелыриттй в соцета нии с фотаиионным осветлением их обесленивает достаточно высокий для практнческих цепей эффект очистки.

Натичие в сточных водах кожевенных эаводов ботьших коли честв сильно диспергированных загряэнений, обладающих высокой агретативной устойчнвостью, привело к исстедованиюю н других методов ее снижения, кроме реагентнык, Одимм из иих ста ла электрокоагуляция в сочетанин с электрофлотацией. Доето инство метода - отсутствие сложного реагентного мозянства, большая компактноеть соорчжении, пучшая управляемость ими и более надежная автоматизация.

Рекомендаии по прнменению этого метода испотьзованы Ленгипроводхозом при проектровании очистнмх сооружений кожевенного завода им. Коминтерна [57]. Нсстедования проводились на лабораторных и производственных экспериментальных установках различных констрчкций (малон̆ н большой модели) проновках различных конструкции (малол н $^{3} / 4$. Установки были оборудованы двумя электродными системамн - вертикального типа в камере коагуляция (растворимые электроды) и горизонталь ного в камере флотации (нерастворимые электроды). Питание выпрямленным током осуществлялось от выпрямителеи марки BCA-5.

В первом цикте исследований очищался общий сток завода. Перед подачей на электрокоагуляцию-флотацию сток отстаивался в течение $10-15$ мин. Реэультаты исследований (табл. 14)

Таб.7и4a 14
Очистка общего стока электрокоагуляцией-ф.лотацней

Затрязвения	Концентрацня 32 гряэяения, метя		Загря: 1 п:	Нонценграция ыагрнэHенй w w	
	на поступ- леняи	\% 1 buxate		на поступ-	на maxone
Взвешенные вещес-					
iва	1500, 0	235.0	Хром	200.0 250	15.0
Сульфиды	200,0	10.3	СПAB	25,0 ।	15,0

оказывают, что методом электрокоагуляции-флотации можно получить эффект очистки при следуюцих электрических параметрах:

Объея шлама составлял $7,5 \%$ от расхода сточной жидкости при влажностн 95%.

Значчтельный расход электроэнергии объясняется повышенным содержаннем сульфидов в сточной жидкости. При очистке обшего стока отмечено также заметное влняние на устойчивость общего стока отми залповых сбросов зольных стоков, которое работы установки талько 4-6-часовым предварительным усредможно
неннем.

Таблина 1 站
Очнстка общето стока, без стоков золения электрокоагуляияей-флотацией при очнстка
$\mathrm{pH}=8,0$

Загрязнечия	Концеитдадня $3 а$ трязнителеи, мद̈,		Затрязнения	Концентрацни загрязнителей, *\&/	
	на поступ-			на поступ-	ни выхаде
Взвепенные вешес			СПАВ	35.0	15,0
тва	1200.0 720		Жнры	100,0	30,0
Сулифпди	72,0 100,0		Жнры	100,	

Хром
лримечание. Окнсляеместь на исступлении составляла воо, на аыходе - 2и,

Поэтому были проведены исследования по очистке общего сто ка завода без стоков золения. Результаты исследований приведе ны в табл. 15. Электрические параметры при этом составили;

Объем шлама составил $3,5 \%$ от расхода сточной жидкости при влажности 94%.

На основании проведенных исследований была разработана технологическая схема очистки сточных вод кожевенных заводов
 [56].

В соответствии с этой схемой зольные стоки выделяются из общего и проходят самостоятельную реагентную обработку и общето ние.

Остальные стоки проходят через сита или решетки, песколов-
устальные стоки прохид $4-8$ и, оборудованные системой аэраки, усреднители в течение 4-8 и, оддуха с интенсивностью 4 ции, обеспечивающей подачу воздуха флотационные установки для улавливания шерсти и жира, электрокоагуляторы-флютато74

ры - для основной очистки стоков. Прил повышенных требованиях к очистке сточных вод предусмат ривается фнльтрацня их через пенополистирольные фильтры. В. Некоторых конкретных

 электрокоагуляиней-флотапией:

случаях (например, кожевенный завод им. Коминтерна) такая схема может дать снижение затрат в 1,4 раза по сравнению с химической обработкой

Сточные воды меховых фабрик

На меховых фабриках осуществляется выделка разтичных ме хов: кролика, кошки, ондатры, нутрии, выдры, соболя, песца и др. Меховой полуфабрикат подвергается химической, физико-хк мической и механической обработке, лартиями или поштучно мической и механической тесс выделки дедится на две частн: опе райии сырейного цеха и красилінного.
В сырейном цехе производится отмока, мездрение, пикелевание, дубление кож. Эти операции сопровождаются образованием сточных вод, загрязненных белковыми вецествами, жирами, хромом, ПАВ, кислотами, органическими и минеральными механи ческими примесями. Удельный расход сточных вод в сырейном цехе составляет 120-160 \boldsymbol{m}^{3} на 1 т полуфэбриката

В красильном цехе производится уморение, протравление, крашение солка. В канализацию поступают сточные воды, загряз нини различыми красителями, хромом, кислотами и щелоча ми, ПАВ, органическими веществами и механическими примесями, ПАВ, органическими веществами и механическими примеся-

Все сточные воды фабрикя делятся на две категории：первая－ ромосодержацие стоки，куда входят все соросы сырей пого пеха （ єез отмоки）и лротравки краситьного，и вторая－окрашенные токи，куда входят стоки краснтьного деха（без протравки）и

$$
\text { Та } 6.7 \text { иء а } 16
$$

Hanmemogatre понazarench	Crok	
	хромисодержамции	окраненвып
Содержанле в воде，мег／д： взвешетиых веществ хрома（трех－и шестивалентного） IIAB ХПК，se／ぇ pl I Окраска по разведешню	$\begin{gathered} 500-2500 \\ 10-60 \\ 40-110 \\ 2500-7000 \\ 3,5-5,1 \\ - \end{gathered}$	$\begin{gathered} 100-800 \\ 20-100 \\ 100-3000 \\ 5,8-6,8 \\ 1: 20 \div 1: 100 \end{gathered}$

Нз таблицы видно，что стоки веховых фабрнк имеют высокую концентрацию загрязнений，усуглубляемую залповыми соросами загрязнителей．Сушествующая на ряде фабрик технологня очист 11 заключается в реагентной обработке хромосодержащего стока железним купоросом，кистотой и известью，длн перевода шест

 последуюшем вертикальных отия кнм показателям как жир

большим объемом осадка．

В связи с этим в Украинском институте инженеров водного хозяйства была предпринята попытка интенснфицировать очист－ ку промышленных стоков меховых фабрик

Нсследования，проведенные на Ленинградской меховой фаб－ рике № 1，привели к выводу о џелесообразности исюользования метода электрокоагуляции－флотацин с последующей доочисткой на фильтрах с загрузкой из вспененного полистирола．Выполня－ на янии вак вабораторных условиях，так и на полупронзвод－ лись оли как в лах оронзводительностью $100-200$ л／и и $1-3 . x^{3} / 4$ ．
 Питание электод ву $110 / 24$ и ВСА 5 На обработку подавался от выпрямителей ВУ $110 / 24$ и ВСА－5．На обработку подавался общий сток меховой фабрики как с предварительной коагуля－ иией сернокислым железом и отстаиванием（доза по иону желе－ за－ 600 ма $/ \lambda$－«режим доочистки»，так и без коагуляиии－ «режим очистки»．Величина $\mathrm{pH}=8-9$ поддерживалась раство－ «режим очискк»．вом карбиа кальция（реагент，применяющийся на фабрике для нейтрализации）
Продолжительность пребывания стока в камере коагуляцин－ 5－7 мин，в камере флотации－ $30-40$ мин．Эффект очистки в

Таблниа 17

Наименования похизатетей	Режны dчисткil		Режнм доочнет ви	
			Ha moctynalu． HKH	на вых0．』安
Содержанне в воде．мгіл：			1023	219
взвешенаых вецеств	198	0,76	4，4	0，9
хрома		0,8	3.05	1，4
железа	57.5	22,2	24,6	10.1
ПAB	4300	1590	2980	1915
ХПК，мд／д Окраска по разведениьо $^{\text {¢ }}$	$1: 15:-1: 50$	$1: 2: 1: 7$	1：3－1：16	1：1－－1：6

Tабтица 18
лектрическне параметры，при которых определялась эффектив ность при очистке и доочистке

Наименонzние показителеі）	$\underset{\text { Елиянцд }}{\text { иумерения }}$		
Расход электроэнергия	$\mathrm{stm} \cdot \mathrm{ti} / \mathrm{m}^{3}$	3×0	0.5 100
Pacxoz tona	c－4：4．4 ${ }_{\text {a }}$	300 50	100 20
Плотность тока	M2：λ	310	100

обоих режимах ириведен в табл． 17 и определен при электричес ких нараметрах по табл． 18.

Электродная система в камере флотации в окончательном ва－ Электродная система в камере фин в камере электрокоагуляции рианазовывалось достаточное для флотации количество газовых пузырьков

Как видно из табл．17，остаточные концентрации загрязните－ тей при том и другом варианте очистки прнмерно одинаковы． Несколько лучше в режиме доочистки проксходит общее сниже－ ние ПАВ и уменьшается акраска．
С учетом технико－экономической оценки вариантов это позво－ С учетом технио－э в качестве рацнональной технологическои лило рекоменд сточных вод меховых фабрик схему с предвари－
 тельной коагуляшией ицией и фильтрованием（рис．41）．
рокоагуляциеи－флотациеи и фильтрованием（ B соответствии стим коагуляции и подщеливанию подвер－
В соответствии с этим коагулиция оия сернокислого железа－ гаются хромосодержащие стоки доза сернокислого желжаиьия 300 мг／я，подщелачиваниє до $\mathrm{pH}=8$ ）．Затем хромосодержанис стоки направляются в усредннтель，куда поданоя стоки．Продолжительность усреднения－4－6 ．Нервое осветле ние общего стока происходит в отстойниках．Іродолжительност отстаивания－ 2 ч．Доиолнительное осветление осуществляется

методом электрокоагуляции-флотации в камере, вктроенной в ольцевой пеноюолистирольньй фильтр со следующими параметрамн фнльтрации:

Скорость фнльтраяни, м/t	
Диаметр гранул фнльтрующей загруэки, ны	7 0, 0
Высота слоя фи,1ьтрующей загрузки, $\boldsymbol{\sim}$	
Диаметр поддержннающей загрузЗи, ж	
Высота слоя поддерживающей загрчзнн, м	
Продолжительность фильтроиик, иа, ч	
Продолжительность промывки, мин	

Продолжительность фильтроиик,ла,
Расширение загоузки лри промқнке,
Основное назначение фильтров заключается в создании защитного действия в елучае проскока загрязненнй. Сток после фильтоов содержит $80-120$ ме/л взвешенных вешеств, $7-10$ мг/ ПАВ. $0,2-0,5$ мајл хрома

Рис. 41. Технологическан схема очнстки сточных вод меховых фабрак
Oкр. сорих окрашенный сток:
 реагентне возяяство; 4 - ус

 вод осадк』
щенвы сrok

Осадок из отстойников в количестве 2-4\% от обработанной воды н шлам из флотационной камеры в количестве 1% при влажности 95% направляются на механическое обезвоживаниє натем в отвал.

Сточные воды фабрик искусственных технических кож *

Фабрики искусственных технических кож выпускают специльные картоны-заменители кож, которые используются в основном для нзготовления внутренних деталей обуви. В качествя сырья берется целлюлоза, макулатура, обрезки кожи, хромовая стружка. Для проклеивания массы и придания водостойостт картону употребляют битум, канифоль, силикатный клей, каолни, едкий натрий, глннозем, латексы. Все эти вещества попадают в сточные воды вместе со значительным количеством волокнистых римесей и взвесей
В канализацию сбрасывается $40-50 \%$ всей воды, исиользуевй в технологическом пропессе. Остальная вода находится в обороте и идет на приготовление и разбавление массы перед отливом картона

* Раздел написан в соавторстве с инж. А. И. Чернечуком. 78

Состав загрязнений сточных вод производства обувных картонв при $\mathrm{pH}=6,5-8,0$ характеризуется показателями, ме
ХПК
Взвешенные вещества $_{\text {БПК }}$
Сүхой остаток
Прокаленный остаток
$200-800$
$250-900$
$40-75$
$800-4600$
$300-800$
$5-30$
$1.10-1.50$

Татекс
Иатенс
Взвешенные вещества представлены в основном в виде волок Ванх материалов явтяюцихся ценным сырьем в проияводстве бувных картонов. Поэтому полное извлечение волокна из сточних вод имеет большое значение для экономии волокнистых магериалов
Отмечается также налнчие в сточных водах нефтепродуктов в виде смазочных материалов и кероскна, который лопадает в производственную канализацию при периоднческон очистке отдель ных узлов папмашин от проклеивающих материалов.
В процессе изготовления картона почти все технологические операции связаны со значительным водопотреблением, средние данные о котором приведены в табл. 19.

Tаблица 19
Расход воды при пронзводстве техннческих кож

Раскод воды на 1 т картона, \boldsymbol{N}^{3}		
прн м ногоEлOPMOM OTAH шинах	Прн однослойном отливе на мащина	
	, Паикке*	, Перели
14,0	40,0	14.0
42,0	19.0	26,0
278	18,0	50
135-200*	50,0	180
7,0	4,0	4,0
4,0	10,0	10,0
-	90**	90**

охорудовання у употнение сальников ва Охлаждение и куум-насосов

* Большее значение относится к двухцилиндровым палмашинам.
** Вода испольэуется многократно после охлажденяя в
К качеству воды, потребляемон для язготовления $[109]$, основными нз которых являются:

Соблюденке таких требований принодит к усложнению схемы водоснабжения предприятий «Нскож» в тех сяучаях, когда вод из прнродных нсточников не соответствует этнм показателям.
Предприятия, потребляющие воду непосредственно из природмх источников, обычно испотьзуют ее в технологическом процессе без предварительной химической очистки, что в сяучае большой общей жесткости воды приводит к преждевременной коагуляции латекса и, следовательно, к ухудшенню качества проклейки кожзаменителей. Во избежание этого к латексу добавляют различные поверхностно-активные вещества, что усложняет процесс приготовления проклеивающих н загрязняет производственные стоки этими же вешествами

Актуальной задачей предприятий «Искож» является снижение Акталия сежей воды мо мипотребления свежей воды $н$, соответственно, уменьше нит доз нимума количества сточных вод, дания замкнутого цикла водоснабжения.

Естественно, возникают опасения в отвошении влияния замкнутых систем водоснабжения на качество выпускаемой продукции.

Опыт работы ряда предприятий, испопьзующих подсеточные воды для трех первых операций (см. табл 23) позволяет сделатн вывод о несушественном влиянии состана воды на качество обувных картонов.

Наиболее значительное количество свежей воды (до 50%) расходуется на спрысках картоноделательных машин.
ходуется на спрысках картоноделательныдмашин.
Радикальным путем снижепия потребления свежей воды для спрысков является использование производетвенных сточных вод с предварительным их осветлением.

При многос,тойном отливе картона на папмашинах качество спрысковых вод должно быть довольно высоким. Наличие в этих водах волокна более 30 мг/А забивает спрысковые трубы н замливает сукно лапмашин.

При однослойном отиве на машинах «Пашке» содержаниє волокна в спрысковых водах может быть несколько повышено, так как сетка, на которой формируется картон, имеет относитель но ботьшие размеры ячеек. Однако при этом остается опасность заб́вки спрысковых трубопроводов, что в конечном итоге нарузабивки спрысковых трубопров
шает технологический режим.
ает технологический режим. кож» (отстаивание, фильтрование на фнльтрах «Вако») не по-
 вод.

Осветление воды в отстойиках разтнышых котьтрукцкй дает возможность получить снижение вавешенных вслиеств на 50 60% при времени отстаивания $1,5-2$ н

Исследования процесса отстанвания показали, что добавле ние сернокислого алюминня дозой в 350 мг/я повышает эффект осветлини до 91% при остаточном содержаиии взвесей 40-60 мгі⿻

Нанболее эффективно происходнт осветленне стоцных вол иредриятий «Искож» при подщела инванни их до $\mathrm{pH}=9,0-9.5$ с прединоии добавтеннем сернокислого амоминия (250 ме/ i). последующим добавлением сернои, остаточное содержание взвеЭффект осветлени
$с 1-10-30$ мә/.

Однако при отстанвании часть волокна всплывает на поверх ногть, тем самым сннжая эффџет осветления

Эффект очистки стопных вод по волокну при работе фильтров Вако» с фильтругюиим подслоем достигает $70-80 \%$.
В качестве подслоя необходимо прниенять дяннноволокнистье чатериалы, в частности, небеленную целлюлозу, посте предваригельного размола в роллах. Можно также использовать скоп, уовленннй на фитьтре, но при этом качество осветленой воды значнтельно ухудшается из-за проскока через фитьтровальнуо значнтельно ухудшает

На некоторых предприятиях очистка осуществляется только бо

Рациональной системой канализованяя являетя аиа «чнетые» и сточных вод в момент их образовання на два поином (папмашины), так и при однослойном отливе картона (машнны «Пашке», длинносеточные машины)
К «чистым» сточным водам спедует отнестн подсеточные воды папмашин и воды, образующиеся при вакуумной дегидрацин папмашин и водойного отлива.
K «грязным» относятся воды после мойки сукон и сеток, а также регистровые воды
Такое разделение позволит производить очистку «чистых» сточных вод с минимальными затратами и использовать их в качест ве спрысковых вод, а «грязные», после удалтния нз них крупных плавающих загрязнений, совместно с избытком «чистых», направ пять на разбавление и прнготовление массы перед отливом картона.

Нсследования по очистке сточных вод фабрик кожэаменителей для использования их в оборотном водоснабжении производились Украниским институтом инженеров водного хозяиства на ленинградском и Одесском заводах «Истехкож» и Таганрогском заводе «Термопласт».

Наряду с исстедованием традииионнг；методов очистки（фишт－ ры «Вако»，отстаинанне）были изучеши различные способы фло－ тацни（напорная，электрофлютация，электрокоагуляцня－флота－ ция）с прнмененнем и без применения коагутлнтов．

Табатйа 20
Очнстка стоков при разлнчных способах флотацин н технологяческих Очнства сток
ларанетрах

Наимены ．． показ：••倍		Вода．оч ндденная способоя								
		вапорноифлотацин			электрофпотанан			smextporoaryil цин－флtovaцı：		
		Дэョа сернгкис．пого 								
		0	250	450	12.5	25	50	12，5	25	50
Солержаиие взве－ пиенньх вешеств， ne／a ХПҚ，ме／．	$\begin{aligned} & 5.31 \\ & 517 \end{aligned}$	224	$\begin{aligned} & 209 \\ & 389 \end{aligned}$	$\begin{aligned} & 112 \\ & 326 \end{aligned}$	262427				44352	33
						408		366		

Сравнительные исследования различных способов флотацин и обработки реагентами（табл．20）показали，что для получения воды，пригодной в оборотном испо́льзовании，наиболее подходя－ щим является способ электрокоагуляции－флотации．Данные，при． веденные в табл． 24 ，получены при следующих параметрах：

```
Hапорная флотация
    马авление насьщения, атн . . . . . . . . . 3.:
    Продолжительность насыщения воздуком. мин . . . . ., \
    Э.аетрофлотацня
    Электроды графитовые
    Пребыванне в электродной камере, мин
    Пребыванне в отстойной камере, мин
    Электрокоагулячия-флотация
    электроды алюоминиевые
Пребыначне в электродной камере, мин
Пробыаяни в отстойной камере мин
. . . }1
```

Далтнейшие исследования на полупроизводственных установ ках позволили разработать технологическую схему очистки сточ ных вод с использованием их в обороте，осуществленную на Одес－ ском заводе «Кожзаменитель»，которая может быть рекомендо вана и для других аналогичных предприятий．
техиологическая схема включает в себя（рис．42）сита или Техии с прозорами равными $0,5-0,75$ расстояния между плас решетки с прозорами，равными тинами электродов．На предпоя ные фильтры «Вако»，целесообразно сохранить их в схеме，тог－ да надобность в установке решеток или сит отпадает．Затем
сточные воды должны пройти усреднение в течение $4-6$ ，с тем，

чтобы обеспечить большую стабильность электрических ларамет－ ров на следующей ступени очистки－электрокоагчяяторах－фло－ таторак．Усрецнитель проектируется，как чсреднитель с аэрацией．

Рис．42．Техиологическая схема очнстки сточеых вод завода \＆Кожза менитель»：

Электрокоагуляционно－флотационные установки вылолняются горизонтального типа со следующими электрическими парамет－ рами электродной системы：

```
Птотность така, а/,
раслод тока, а.шi<>
Расход металла электродов (алюминня), д'м
Продолжятельность флотации，мин
```

Объем шлама при влажности 96% составляет $1,5-2 \%$ от обь－ ем а обработанной воды．Он сбрасывается в резервуар，откуда возвращается обратно в производство．Сточная жидкость с со－ держанием взвешенных вешеств $50-70 \mathrm{~m} / \boldsymbol{\wedge}$ направляется на пе－ нополистирольные фильтры с плавающей загрузкой из гранул вспененного полистирола．Общая высота загрузки－ $1,1-1,2$ м． Диаметр гранул－от 1,5 до 6 мм．Фильтрование и промывка Диаметр гранул－освяяютяя сверху вниз．Рекомендуемая скорость
 фельтрацни－－ 15 молительность промывки－10－15 мин 1 раз в $15, ~ л / с е к \cdot м^{2}$ ，продолжительность промывки смену（2－3 раза в сутки）．Вода после фильтров содержит взве－ шенных веществ 10 － 20 м $2 / \AA$（при 30 мия ня промывку）и направляется в сборник чистой вод забирается в производство и на промывку фильтров．
$6+1 / 4-5-1514$

Проминные воды и осадок из электрокоагуллтора-флотатора собнраются в резервуар-сборник, откуда направляются в усреднитеть на повторную очистку. Нз этого же резервуара предусма трнвается сброс продчвочной воды в городснчю канализацию.

Сточные воды мясокомбинатов

Сточные воды мясокомбннатов содержат большое количество эагряэнении, образуюшихся в процессе производства, гтавным образом при промывке полупродуктов, а также при их лереработ ке, при поддержании чнстоты в помещениях и мойке оборудования
Производственные сточные воды мясокомбинатов можно разделить на несколько категории: жиросодержащне стоки, загряз. ненные жиром и другими отходами, грязные, содержащне навоз, каиыгу, песок, мннеральные и органические растворенные вещес тва; незагрязненные от холодильных и котельных установок.
Обычно на мясокомбинатах предусматривается две канализационных сети - по одной транспортируются жнросодержащие токи, по другой - все остальные
Қак при самостоятельной очистке сточных вол мясокомбинатов, так и при сбросе их в городскую канализацию, основные проблемы возникают в связи с наличием жиросодержащих стоков, поскольку в любом случае необходимо из этих стоков удалять жнр. Удаление его в жироловках обычных конструкций, основанных на принципе отстаивания, не превышает в пучшем стучае $40-50 \%$. При дооборудовании их системой удаления осадка можно повысить иэвлечение жира до $60-70 \%$, однако, учитывая что начальные концентрации жира составляют от 500 до

Вопросам повышения эффективности работы жироловок и разработке новых конструкций их посвящен целый ряд работ [47, 48]. Нсследовались и совершенствовались конструкции жиро"ювок. Оценивалось влияние на эффект задержания жира предварительной аэрации, реагентной обработки, в частности, хлорирования и т. д. Кроме того, изучалась и возможность применения азличных спосооов флотации для удаления жира из стоков мясокомбината $[34,49]$.
По данным зарубежных авторов [76], высокий эффект очистки от жира и взвешенных веществ (98,6-99,9\%) абеспечивает напорная флотация в сочетании с коагуляцией стоков сернокислым алюминием с дозами до $400 \mathrm{me} / \mathrm{\Omega}$

В Ленинградском инженерно-стронтельном институте детально исследовалась возможность лрименения импеллерной флотации. Особый интерес представляют опыты, проведенные в производственных импеллерных флотационных машинах $\mathrm{M}-6$ с объемом камер 6,52 м 3 [49]. Стоки подвергались однократной обработке 84

в одной машине и двукратной поледовательно в двух машинах в течение $10-15$ мин. При однократной фиотацни эффект очистки от жира составип $53,4 \%$ (с 267 ме/л до 125 ме/л), прн двукратной - 70% (с 297,4 ме/л до 75 ие/л). Эффект очистки по взвещенным веществам составил соответственно $50,3 \%$ ч 64%. При этом количество воды, отходящей с пеной (декантата), достигает 20%. Декантат остается сильно загрнзненным жирами и взвесями и требует цаяьнейшей очисти. Повышение эффекта очистки стоков заключается в данном случае в увеличении лродолжительности флотации, что, однако, вряд ли целесообразно, так как повлечет за собой и увеличение объема декантата. В связи с этим способ импеллерной флытации при очнстке зажиренных стоков мясокомбинатов может найти только ограниченное применение.

Более высокие результаты получены при иэвлечении жира из сточных вод мясокомбннатов методом электрофлотации [33, 34] Авторы рекомендуют электрофлотационную жироловку с анодом, изготовллемым из графитовых пластин толцннои $50-60$ мм, уло женных на дно жироловкн. Катодом служит сетка из нержавею щей стали, расположенная пад анодом на расетоянии $10-20$ мм. Оптимальные расцетные параметры процесса электрофлотацин следуюшие:

При этнх параметрах эффект очистки от жира на полупроизводственной установке составил в среднем $96,4 \%$, при началь ных концентрациях жира $440-4570$ из/ $/$. Вместе с тем авторы отмечают плохое осветление воды и рекомендуют вести процеся электрофлотации с предваритепьной обработкой реагентами $(0,8 ~ z / \lambda$ хторного железа и $0,8 ~ 2 / \AA$ хлорной нзвесги) при следующих параметрах:

$$
\begin{aligned}
& \text { Плотность тока, ма/см } \\
& \text { Продолжительность обработки, мин } \\
& \text { Раскод электроэнергии, квт•и/д }
\end{aligned}
$$

$20-22$ $12-18$

0,3
В этом случае достигалась не только высокая степень обезжи ривания, но и снижаяась концентрация взвешенных веществ 1955 мг/л до 62,5 мг/л.

Следовательно, добавку реагентов в стоиь высоких дозах не всегда можно признать приемлемой, так как, кроме затрат на сами реагенты и их приготовление, возрастут затраты на транспор тировку и ликвидацию возросших объемов осадков н шламов ухудшится, если не утратится вовсе, возможность регенерации жира из флотационного шлама

Последнее обстоятельство имеет немаловажное значение, по скольку получение из шламов технического жира вполне возмож-

но, а его количество может дос ниать в завнснмости от ми комбината $200-500 \mathrm{ke} / \mathrm{cyt}$ и бо.cl

Метод электрокоагуляцни-флотации. испытанный на Ровенском мясокомбинате Ұкраинским институтом инженеров водного хо зяйства, дал по.тожительные резчльтаты - он лочти не имеет упомянутых медостатков [60].

$$
\text { T а б. } \mathrm{x} \mathrm{u} \mathrm{I}: 21
$$

Характернстика жиросодержащих стоков
мясокомбината

Наименование ток:затетей	Величина покбзателей		
	$\begin{gathered} \text { matca- } \\ \text { mathax } \end{gathered}$	$\begin{gathered} \text { Muнwisathn } \\ \text { HAG } \end{gathered}$	
Содержание в стоках M2; Ω :			
жиров	1840	82	800
взвешенных веществ	4580	135	1100
ХПК, ме/А	2650	160	960

Жиросодержащие стоки комбината характеризуются показателями, приведенными в табл. 21, количество их составляет 300350 м ${ }^{3} / с y$. Хотя основная масса жнров находится в грубодисперсной форме, содержание эмульгированных жиров и коллоидальных органических веществ в стоке значительно. И. с теоретической стороны и в результате сравнительных исследований (сравнивались напорная, электрофлотация и электрокоагу-ляция-флотация) для таких стоков наиболтее подходящим оказался способ электрокоагуляции•флотаиии, как наиболее энергично воздействуюций на снижение агрегативной чстойчивости высокодисперсных загрязнений.

В результате исследований установлены необходимые параметры процесса и эффект очистки сточных вод:

Продолжительность обработки стоков, мин
Удельный расход электричества, $\alpha \cdot ч$, . 3
Плотность тока, аім ${ }^{2}$
Расход электроэнергии, квт/м ${ }^{3}$
Напряжение, в
Расход металла (железа) электродов, мгіл
Снижение концентрации жира, прои Снижение конщентрации вэвешенных веществ, прои Сннжение ХПК, проп.

стоки должны пройти грубую осақ1н; на решетках с зазорами менее 2 cm (2 cm - расстояние межд электродамн). К установке необходим подвюд пара на елучай разогрева жира, застывшего на поверхности.

Сточные воды фабрик первкчной абработки шерит

На фабриках первичной обработкн шерети (ПОШ) промывается овечья шерсть перед отправкой ее на дальнеишую переработку.
Сточные воды ПОШ представляют собой загрязненную промывную воду, которая вкпючает в себя вещества, смываемые с волокон в процессе промывкн (механические примеси, перстныи жир пот волокно) и добав.тяемые в воду для отмывки шерсти от загрязнений (мыла, сода, анноктивные и неионогенные моющие вещества, поваренная соль).
Загрязнения фабрик ПОШ находятся в ралличном днсперсном
 ки растений) ; коллоидном (жир, глина, гуминозые вещества, продукты деструкции кератина); молекулярном (мыла, СПАВ белки, органические кислоты жиропота) и ионном (сода, поташ соли неорганических кислот жиропота, сульфаты, хлориды).

Данные о загрязненности стока фабрик ПОШІ и ее снижении при отстаивании приведены в табл. 22.

Зффективность отстанвания стоков фабрих Поші Т аблица 22		
	Ctok	
Наименование показателей	неосиценньй	nocme 2-часоного отстаивания
Содержание в воде, a/n:		5,0-14,0
шзерсти	10-500	0
жиров	1500-6000	$1000-4300$
CПAB	370-800	$300-600$
ХПK, $2 / \sim$	-	6,0-26,0
以елочность, ме/А		50-28,0
Плотный остаток, $2 / 2$	9,0-35,0	80-22,0

Примечание. Величииа рН стоков в обоих случалх састалаяла 8 -
ельный расход воды составляет при промнвке шерсти схеме с противотоком 40 м 3 на 1 т мытой шерсти а при использовании воды полоскательной барки - $25 \boldsymbol{m}^{3}$ на 1 т шерети [2]. Удельное количество загрязнений, смываемых с шерсти, представлено в табл. 23.

Объем шлама составляет $2-4 \%$ от количества обработанной воды при влажности $82-84 \%$, содержание жира - 30% от сухого вещества
Электрокоагулятор-флотатор рекомендуется устраивать горизонтального типа со стальными вертикально расположенными электродами (см. рис. 22). Предварительно жиросодержащие

Ta6.14ца 23
Содсржание загрязнений в сточных водах фабрик ПоШ, не на Содсржание загря
1 т мытой шерсти

Загрязнения	Мінтая перегL		
	тонкал	полугонкая	rpyoas
Шерстный жнр Пот Мехаяические триыеси	$\begin{aligned} & 250-350 \\ & 170 \\ & 600-700 \end{aligned}$	$\begin{aligned} & 150-250 \\ & 160 \\ & 500-600 \end{aligned}$	$\begin{gathered} 40-60 \\ 120 \\ 300 \end{gathered}$

На большинстве современных фабрик ПОШ очнстка сточных вод предусматривается в 2 этапа. На 1-м зтапе из наиболее зажиренных сточных вод извлекается ценнын шерстный жир (ланолин). Регенерированный, он представляет собой побочную продукцию фабрик. На $2-$ м этапе происходит общая очнстка стоков по всем показателям, степень которой определяется в каждом конкретном случае исходя из местных условий.
Д.ля извлечения из стоков шерстяного жира на Невинномысской фабрике ПОШ был разработан нашедший широкое примененне флотационно-сепарационный способ, изучение и исследование которого производилось также во ВНИИ ВОДГЕО [25]. В цех жиродобычи поступают наиболее концентрированные по жиру стоки противотока и первых двух барок от промывки тонкой и полчтонкой шерсти (схема на рис. 43). Жиросодержащие стоки поступают в импеллерные флотационные машины. В завнсимости от типа импеллера (аэратора) извлечение жира нз стока может достигать $70-94 \%$ при продолжительности флотации 60120 мин. Пена нз машин поступает в один сборннк для разрушения при подготовке паром и затем в другой для нагрева образовавшекся жировой эмульсии по $90-95^{\circ}$, которая ндет на лервую сепарацию, перекачивается дтя упаривания в бак и затем направляется на вторую. Товарный жир собирается в приемник откуда разливается в тару. Выход товарното жира завнсит от успешной работы флотационных машнн и сепараторов и состав ляет $40-52 \%$ от всего количества, поступаюшего со стоками.

Второй этап - очистку общего стока - предлагалось осуще. ствлять различными методами по различным технологическим схемам.
В практику последних лет вошел метод сораживаиия стоков [11] и химической очистки [30], заключающийся в отстаивании стоков, обработанных большими дозами глинозема и извести (доза глннозема $150-250 \mathrm{mz} / \Omega$ по иону алюмнння, доза извести-$1000-1600 \mathrm{mz} / \boldsymbol{\lambda}$ по CaO). Последний, учитывая состав стоков особенно фазово-дисперсное состояние загрязнителей, в принци пе может обеспечить высокий эффект предварительной очистки достаточный для подачи стоков на биологическую станцию. Од
 очистке, обусловленное высокими дозами ן":гентов, создает дополнитетьнчю проблемя его уплотнения и шизвоживания, реше ние которой требчет больших капнта.тьных и эксплуатацнонных затрат свяэанных например, с механнческим обезвоживанием осадка на барабанных вакуум-фильграх.

Рис 43. Схена фотаноино-епараторного способа извлеченяя шерстного жира:

- флотаииония манина; 2 - пеносборний бак: 3 - промежуточныи бак; 4-бах для подогрева жира: 5-бак для подогрева водопроводлон вод末; ${ }^{6}$ - первнчннй rapy.

Поиски метода, близкого по эффектнвности к химнческому, но даюшего меньший объем осадков, привели к исследованию флодашии для очистки сточных вод ПОН. Исследования проводились Таиии для оч институтом инженеров водного хозяйства на НевинУкраинским иноШ им. Леннна. Были рассмотрены несколько возномысскои ПОШ им. Летания

Обнадеживающие результаты получены при электрокоагуля-ции-флотации. Так, при продолжительности пребывання жндкости в камере электрокоагүяции 20 мин н при электрических паpamerpax:

> Напряженяе, $\boldsymbol{\varepsilon}$ $\begin{aligned} & 20 \\ & 250\end{aligned}$
> $\begin{aligned} & \text { Плотность тока, а/ } \boldsymbol{\mu}^{2} \\ & \text { Расход электроэнергии, квг } / \text { м }^{3} .\end{aligned}$
> $\begin{aligned} & 250 \\ & 16\end{aligned}$

еств с удалось получить снижение концентрации взвешенных вещцесв с 5460 мд/л до 25 , жиров-с 2300 мг/л до 32 , сулфтрам, вода $850 \mathrm{~m} / \Omega$ до 40 мә/л. Судя по электрическим параметрам, вода
 хо！и：э элекроэнергия．Ilри добавлении в воду 2 д／А поваренной （0．ו।（иредусматриваеся технологией промынкн шерети），тот же
 нelluи 4 в．
Больший практнчсский интерес представляет флотация пчзырь－ ками углекислого газа，выделяющегося при подкистении стока （химическан флотация）．Фактнчески это тоже химическая очнст ка стоксв，по форме отличающаяся от вышечпомянутой химичс－ сфой очнстки ВНИИ ВОДГЕО только порядком ввода реагентов， когда сеачапа сток обрабатывается глиноземом и известью до $\mathrm{pH}=12$ ，а затем，после отстаивания，серной кнслотой для нейтра－ лизации изоыточной щелочности．
При хамическом методе УНИВХ сначала вводится глинозем и кислота до $\mathrm{pH}=4-4,5$ ，а затем，после флотадионного осветления， известь дит нейтрализации избыточной кнслоты．Естественио，что характер протекающих химических реакций в том и другом слу чаях будет различен．В сильно щелочной среде образуюотся хло－ пъя труднорастворимого алюмината кальция，обладающие высо－ кой адсорбционной способностью，что и приводит к осветлению， сточной жидкости．В слабокислой среде после введения коагу－ лита образуется гидроокись алюминия，являющаяся хорошим коагулянтом и сорбентом，а после добавки кислоты вероятна ко－ агупяция белковых веществ，изоэлектрическая точка большин－ ства которых находится в пределах $\mathrm{pH}=4,1-4,7$ ．Специальные опыты указывают также на ооразование связей между СПАВ и солями кальция и алюминия（табл．24）．

	условия очистки				Ус．овия очистхи		
	pH	$\substack{\text { noga } \\ \text { Hosemat } \\ \text { Hos．}}$ w2！			pH		
480 476	3，5	1000 1000	31,0	468	12，0	0.0	149，0
468	4，5	0，0	252，0	462	12，0	1000	34，5

Исстедования по флотационной очистке сточных вод в кислой среде проводились как в лабораторных условиях，так и на экспе риментальных производственных флотационных установках про изводительностью $250 \Omega /$ и（горизонтального типа）и $1,4-3.4 u^{3} / u$ （вертикального типа）．На установки подавался сток，$-3,4$ ботанный сернокислым алюминием приготовляемым в реар ном хозяйстве действующих очистных сооруженнй．При ручной
（не автоматицескои）доэировке реагентов в $: \therefore$ вьные пернодь ощущалась недостаточноеть тазообразовани：：Іотоиу установ ки были донолнительно оборчдованы электроднон системои д．т электрофлотации，которая включалась в пернод малого тазооб разования．Қак показали исслдовання，наличие дополнитель ной злектродной системы онравдывает себя при горизонтальнои конструкции флотационной камеры．При вертикапьной же крат ковременные снижения интенсивности выдетения газа существен но на эффективность работы не скаэываются．При автоматизи но на эффектияность работы не скаываюотся．При автоматизи－
рованном дозироваиии реагентов устройство дополнителыной рованном дозировании реагентов
электродной системы не требуется．

Усреднениые результаты работы соризонтальной флотационной камеры и основные параметры реагентной и электрохнмической обработки жидкости приведены в табл．25．Қак видно из таблт цы，при химицеской флотации в данных условнях можно полу чить достаточно высокий эффект очнстки по всем показателям особенно при продолжительности пребывания стоков 40 мин и вспомогательном действии электродной снстемы．При накоплении шлама на поверхности в течение 2 и его объем составлял 10 － 11% от объема обработанной воды три втажности $85-87 \%$ ．

Таблица 25
Очнстка сточных вод фабрикн ПоШ флотацней при разлнчных технологических параметрах

Наименовяние пондателеа	Время пребываняя воды вокамере，мид					
	20		25		40	
				产	管	曹
жнров	1865	170 19	$\begin{array}{r}2013 \\ 374 \\ \hline\end{array}$	125	1850	52
СПАВ	345	19	374	26	338	24
ХПК，ме／＾	15500	2040	13150	2560	11710	2220
pH		4，5		4，5		4，8
Доза коагулянта，ме／\sim ，считая на ион	160－200		160－200		160	
Доза кислоты，ме／д	1085		1030		775	
Расход электроэнергии，квт $\cdot \boldsymbol{\text {／}} \mathrm{m}^{3}$	0，0		0,14		0.14	

Исследования работы вертикальной флотационной камеры по зволили уточнить все необходимые параметры химической фло тации и ее эффективности，на основании чего была предложена технологическая схема очистки сточных вод фабрик ПОШ фло тацней в кислой среде и конструкция флотокамеры

Технолотическая схема очистки сточных вод (рис. 44) включает в себя обычный комплекс сооруженнй предварительтой очистки, располагаемый, как правняо, на территории фабрия, и ком. пиекс сооружений химической очистки, начинанщнхся : вертнкальных отстойников, рассчитанных на 2-4-часовое отстаивание,

посредством которых задерживаются грубодисперсные примеси для предотвращения заиливания последующих сооружений. Затем стоки поступают в накопители, роль которых заключается в снижении агрегатнвной устойчивости высокодисперсных загряз• нителей за счет выдерживания стоков в них в течение 2-3 суток. Такое выдерживание снижает в $1,5-2$ раза расход коагулянта, что весьма существенно в виду высоких доз его, а также нагрузку на вакуум-фильтры по сухому веществу. Одновременно в накопитепях происходит усреднение стоков, облегчающее нх дальнейшую обработку реагентами. Исключение нз схемы накопителей возможно только при соответствующем технико•экономическом обосновании. Сточная жидкость, прошедшая накопители, обрабатывается глиноземом при дозах $80-200$ мг $/ \Omega$, считая на ион алюминия, проходит смеситель, рассчитанный на 1,5-2-минутное смешение и поступает во флотокамеры. Кислота вводится непосредственно перед флотацией в дозах, обеспечиваюцих под-

нржапие $\mathrm{p} \mathrm{H}=4-4, \overline{5}$. Рекомендуемая конструкция фвютокамеры представлена на рис. 45. Қамера реакции рассчитывается на 4 мин. Продолжительность пребывання стоков в зоне флотации -
30 мин. ШІлам из флотокамеры поступает в цех механического обезвоживання при втажности $94-95 \%$, обеспечивающей самотечную его транспортировку. При механической транспортировке можно снимать шлам с влажностью 90$92 \%$. Объем шлама - 810\% от объема очищенной воды. Часовая пронзводительность вакуум-фильт. тельность \quad вакуум-фильт-
ров - $15-20 к г / \mu^{2}$ по сухо-

1^{\prime}

Рнс. 45. Схема радиальной камеры химической флотации производительностью $300 \boldsymbol{\mu}^{3} / \mu$:

- зона фпотации; дI- зона уплотне-

 д- кольдевоя жепоб для сбора шллама:
9 - приямок плд осадка;

му веществу. Очищенная вода нейтрализуется известью. При использовании очиценной воды в обороте нейтрализацию нужно осуществлять реагентами, не содержащими ионы кальция. Ней трализованный ($\mathrm{pH}=6,5-7,5$) сток может направлятьея на сброс или биологическую очистку. При оборотном использовании стока его целесообразно пропустить через пенополистирольыые фильтры для удаления оставшихся взвесей.
фильтры для удаления оставшнхся взвесей.
Эффект очистки по предложенной технологии может быть при-
Эффект очистки по предложенной технологии может быть при-
нят по табл. 26 . Затраты на очистку стоков снижаются в 1,5 ранят по табл. 26. Затраты на очистку стоков снижаются в
за по сравнению с химической очисткой в шелочной среде.

Қонструкция рекомендуемой флотокамеры раднальная со встроенной камерой реакции. Камера (см. рис. 45) рассчитана на производительность $300 \mu^{3} / 4$. Диаметр рабочей части 8 м, глубнна активной зоны (зоны флотации) 2 м. Стоки и кислота поступают в камеру реакции, в верхней части которой устраивапося решетка-гаситель для устранения вихревого движения емесо гасителя может быть вмонтирована система вертикаль Вместо гасителя может быть вмонтирована система вертикаль ных электродов для электрофлотации в период недостаточного
газообразования. Недостаточное газообразованне может быть вызвано причинами, указанными выше, и вследствие снижения

Таблй":

Наиусповение показателей	Величнна показатетыд пэды, ме̇л		Эффектнінисть очнеткн, пуоц.
	нскодйыі	суниicernin	
Содержанне в воде:	7840	155	98, 1
взвепенныт веществ жиров	2260	176	92,2
спиров	415	34	91.8
XПK	16800	2110	87,4

теяпературы стоков ниже 18° в зимнее время, особенно при наличии наколителей. Рабочее напряжение на электродах 6-8 в_ При подаче воды во флотокамеру насосами устройство электрод
 иои системы излинне. В этом случае достаточна подача воздуха в насосы в количестве 1 2% от расхода перекачиваемой воды. Из камеры реакции стоки постугают в активную зону флотокамеры, где происходит

Рис. 46. Схема установки для очистки небольших ко.личеств сточных вод от высокомолекулярных соединений;

всплывание загрязнений вместе с пузырьками газа. Всплывшиий шлам сииральным скребком периодически сгребается в шламоотводящий лоток. Осветленная жидкость через отверстия в нижней части камеры отводится в кольцевой карман, а затем через водослив с регулируемой кромкой - на дальнейшую обработку. Несфлотированные частицы поступают в осадочную зону, спопзают в приямок и (1-2 раза в сутки) выводятся из флотокамеры.
Мі.яя обеспечения надежной и бесперебойной работы установки ВНИИ ВОДГЕО разработана система автоматизации дозирования реагентов.

Сточные воды других производств

Очистка флотацией сточных вюд не ограничивается рассмотренными выше производствами. Имеется и целый ряд других предприятий, где она или нспользуется в технологических схемах

очисткистоков, и. аи доназана возможность а целесообразность ее примнения,
Сточкле воды от иронзводства и лереработки животных жиров могут оищаться напориой [79] или вакуумной фтотаииен [106] В слуяе регенераиии жнра ввол:тв конгулянты не рекоменду ется, хся это и затруднит задеүюнние снтьно эмутьгнрованной части жров [70].
Резу,таты очистки сточных во: напорной флотацией следуощие. Сдержамие жира снижьшось с 4300-3830 мат до 2700 мец ли на $93-99 \%$ БПК - с 6800 меід до 470 мгл или на 93%. Пи этом регенерировадось около 4 ке жира па 1 м 3 сточных во При вакуумной флотаиии содержание жнра 乡меньшаных во. При вак 40 ия но 990 а взвешенные вещества лось с 900 мд/л до 40 ма/л итн на 99% а вэвешенные вещества эадержвались в количестве 90 - 5000 ме/л до очнстк
200 мг после очистки. 200 мд/ после очистки.
По Дугим нсточникам [92], эффект очисткн сточных вод производсза пищевых жиров фтотацней с ирименением реагентов несколко ниже - $50-85 \%$ по удаленню жнра и $20-40 \%$ по сниженю БПК. Указывается [74], что обработка стоков электрнчесим током при напорной флотании слособствует задержанию жров.

Сточье водь коксохимнческого производства, содержашие саста, молистые вешеств и нафтатин, очицались в лабораторных усовиях импелтерюой фпотацией [9]. Использовалась шесных усовиях имлеллернои флотациеи [9]. Мспользовалась шестикамяная флотационная лабораторная машина конструкцин инстита «Механобр» с рабочим объемом камеры 5-6 л. При очистк общего стока (температура стока $55-57^{\circ}$) производительногь установки достигата 690-800 л/ч. Остаточное содержание асла составило $4,2-33,7$ меіл. При понижении температуры сока до $20-30^{\circ}$ остаточное содержание масел уменьша лось д 2-5 м $/ \boldsymbol{2}$. Окисляемость снижалась прнмерно в 2 раяа.

Очияка стока дефлегматоров бензольного отделения (66100 мед остаточного масла) менеє эффективна, по-видимому; нз-3a юее высой температуры сточных вод, достигавшей 76-8E
Имется также опыт извтечения нафталина импетлерной фло тациеіे из сточных вод коксохимического производства [82]. На усановке, состоявшей из 4 камер общей производительностьк около $1000 \mathrm{~m}^{3} / \boldsymbol{u}$ извлекается 15 т нафталина в сутки, очищеной водой сбрасывается 0,05 мг/д. Благодаря регенерации в писываемом примере, его побочное производство увеличилось Егри раза

Стоные воды газосланцевого завода могут очищаться от смо ты в ппарате, предложенном Н. А. Гребневым [10], с диспер гировчием воздуха через пористье колпачки (см. рис. 18) с от кортй ороии, средн 15 ати, $0.24-0,31 \mathrm{~m}^{3} / \mathrm{u}^{3}$ пода ча стяной жидкости - от 8 до 12,5 m 3 на 1 м 2 водного зеркала

при пребывании ее в апиарате в тенение 20-30, мсн. При таких рабочнх параметрах выход смолы ы" превышал $1-1,6$, $: 2$, тог да как начальное содержание смолы было $110-220$ ме/ чено, что в щелочной среде быстрее лроисходит зарастание от верстий колпачков, во избежание чего воду рекомепдуется под кислять.

Сточные воды прачечных подвергались очнстке флотацией, как в порядке опытной проверки [114], так и в пронзводственном масіІтаб́е [94]. В лабораторных условиях испытывалась вакуумная флотация с предварительной обработкой жидкими реаген тами - сернокислым алюминием, хлорным железом, известью Лучшие результаты получены при использовании хлорного железа и сернокислого алюминия, правда, прн довольно высоких дозах - 500 ме/л и 600 ме/л (табл. 27).

Таблида 27
Эффективность очистки сточных вод прачечных вамуумной флотацией

	Вс.личины локазате лей нехолнон сточноһ доды	Эффект очксткя, проц. с применением	
		серегкнслаго	$\begin{aligned} & \text { хлорного } \\ & \text { железезя } \end{aligned}$
Содержание вешеств, ма/л: взвешенных	500	-	88
растворенных (мыла, замаслнвателей)	500	77	97
BIIK, $\mu 2 / \mathrm{s}$	1200	82	83

Пронзводственная установка, работающая по способу напор ной флотацни с применением сернокислого алюминия и каустика обеспечнвает возврат воды в производство в количестве 87% и может быть доведено до 95%

ПІри очнстке сточных вод прачечных (более поздние работы) на первое место выдвигается проблема освобождения этих стоков от поверхностно-активных веществ. Отиечается, что методом пенной сепарации [83] в пену иожно перевести 80-90\% ПАВ при одновременном снижении концентрации жиров на 49%, взве шенных веществ - на 79%, XIIK и БПК - на 40%. Концентрат пены, содержащий до 659 мг/ ПАВ может быть использован повторно дмя стирки. По другим данным [31] возможный макси вторно для стирки. По другим данным эффект очистки от ПАВ не превышает $66-76 \%$ при малтный эффект очистки от ПАВ не превышает 66-76\%
словии добавления коагулирующих добавок ($25-60$ ме $\boldsymbol{\lambda}$).
Сточные воды рыбоконсервных заводов очищались как имнел терной, так и напорной флотацией [65]. Опыты по импеллерной флотаиии проводились в пабораторной флотационной машине типа 138Б-ФЛ института «Механобр». Результаты очистки стоков в зависимости от продолжительности флотации и при коэффици енте аэрации 0,12 приведены в табл. 28.

Учитывая высокое загрпзнение декантата и необходиность его чистки, процесс предпочтительнее вести при минимальной прорлжнтельности флотацин.

Таб.лища 28
Очнстка стоков рыбоконсервных заводов импеллерной флотацией

Наяменование показателей	$\begin{aligned} & \text { Cток } 10 \\ & \text { Очнетни } \end{aligned}$	Ветичины показателея в очнщеквпи воде прн продолжнительностн фпотацин, жан			
		3	5	19	15
Содержаюне в воде, мг/s:	603	8.0	7.2	3,6	0,7
жзвровенных веш迷得	1310	382	3.27	288	113
XПK, ме/ $/$	2560	1350	1323	1141	1030
Объем декантата в проц. от отработанноf воды	-	10,9	13,2	22,7	28,1

Опыты по напорной флотации велись при †.итацнн в течение 5,10 и 15 мия, при длительности насыщения токов воздухом 1,5 н 2 мин, давлении насышения - 2,3 и 4 ати и при насыщении воздухом 30,50 и 100% обрабатываемой жидкости. При рекомендуемой авторами продолжительности флотацин 15 мин, давлении 3 ати, длительности насыщения воздумом 2 мин и количестве насышаемой воды 50-100\% эффект очистки составнл, лроц.:

$$
\begin{aligned}
& \text { По жирам } \\
& \text { По взвешеным вешествам } \\
& \text { По ХПК }
\end{aligned}
$$

Сточные воды аавода синтетических продуктов (исходное сырье - нефтепродукты), содержащие рлд специфических за рязнителей, таких как углеводороды, летучие жирные кислоты всплывающие вещества-нефть и масла, сероводород, алкилсульфат, для выбора метода предварительной очистки подвергались отстаиванию и флотации с коагуляцией и без коагуляции [37] Обработка сточной жидкости напорной фпотацией (другие спо собы флотации - импеллерная и с диспергированием воздуха че рез мелкие поры из-за обильного вспенивания оказались технически малоприемлемыми) производилась в лаоораторной уста новке (см. рис. 14). Сточная жидкость заливалась в напорнын бак, в котором от трубопровода сжатого воздуха создавалосв давление 2-3 ати Через 3-4 мин часть жидкости выпускалась цилиидр, где пронсходи7о выделение пуырьков воздуха и об в цилиндр, где происходние пенного слоя. Через 20 мин после впуска из средней разование пенного слоя. Через 20 мин после впуска из средней
части цилиндра очищенная вода отбиралась для анализа. Пред части цилиндра очищенная вода отбиралась для анализа. Пред
ta6.ania 29

98

ределении дозл коа лынта
 дяция пронодинын сериокисяым алюминнем дия дозе его $300-400 \mathrm{mz} / \mathrm{s}$.
Результаты опытоу по от таиванию (время отетанвания 4) н наторной фяттации сведены в табл. 29.
Как вндно из табыниы, сннкение концентрацни взвешняных веществ и тетучих кнслот прн флотации заметно выше чем прн отстаивании (ирн уменьшении объема сооруже ний в $2-3$ раза). Снижение концентрации углеводородов примерно одинаково. Количество шлама, образующцегося при фтотании по объему, в два раза фенше чем осадиа при от мешьше, чем осадка при от стаивании. Таким образом, ме тод предварительной очистки сточных вод завода сннтети ческих продуктов может быт, выбраи на основании необ ходимой степени предвари тельной очистки или путем технико-экономическото сравнения.
Сточные воды пронзводства белково-витаминных концен тратов, образуюшихся на опыт-но-промышленной установке, изучались в Новочеркасском политехннческом институте Автором были проведены оиыты по осветлению смеси соросной бражки с промывной водой импеллерной и напорной флоиипеллернои и напорной фло-из-за обильного вспенивания оказалась технически неприемлемой.

Осветлению напорной флотацией подвергались предварительно коагулированные стокп. Доза реагентов составила: гли-

нозем - 300-400 ме/ 4 , полной коагуяяии желательно предварительлс выдержнваинь стока в течение $5-74$.
i/лрометры напорной флотацпи:
Lавление насыщения, аты

引родолжнтельность флотация, ми:
1.) 20

Fezутьтаты опытов приведены в таби, 30.
1.16.texam 30

Очнстка сточних вод БВК напорной флотаиней

Наименованне показателей	До фтотация	после фио тациин	
Содержание в воде, мжіл:			91.5
взвешенных веществ	1140,0 40	310,0	30.0
углеводородов	81.7	15,5	81.0
обтего азога	53.2	39,0	26,5
БПК $\mathrm{z}_{20}, \mu /$ /a	452,6	134,0	71.0

Объем шлама после 20 -минутного накопления составлял 3$5 \%$ от объема обработанной воды, а его влажность - $95-96 \%$.

Очистка сточных вод от некоторьх
 специфических загрязнений

Как уже упоминалось, флотапию можно рассматривать не ольо как метол уталсния из сточных вод нерастворенных загрязнений, но н как метод понижения концентрашии растворенгрязнении, но н как метод соединений, например, синтетических поверхностно-актнвных вецеств, некоторых ионов, в частности, радноактивных нзотопов, бактерий н клеток.
Выпуск продукции органического синтеза промыштенностью возрастает все больше. В связн с трудностью очнстки сточных вод от большинства из них ооычными методами, многие иссле ователи все шире используют для этого пенную флотацию [22, $27,38,69,78,81,94,101]$. Не все описанные способы флотации одинаково приголны дтя этой пели. Наиботее приемлемыми яв*

 ких пределах регулируемое количество подаваемого воздуха (нм пеллерная, пневматическая, эрлифтная фпотация, флотация при подаче воздуха через фильтросы). Флотационная очистка от рас творениых органических веществ не всегда может быть осущест. вимой и практнчески целесообразной, все зависит от внда рас творенных высокомолекулярных соединсний и их концентрацин в исходной воде. Так, например, в отдельных опытах автора по очистке стоков завода синтетических продуктов па лабораторной

имлеллерной установке оказнванось, цто в пегуу переходнт окопо потовины всей сточной жидкости, а в оставшейся - сохраняется еце высокая концентрацня вспенивателеи. Практически такая очистка непригодна. Но с другой стороны, в ряде слччаев флотацня может оказаться единственным приемлемым методом понижения концентрацни растворенных высокомолекулярных соедижений, зачастую отрицатстьно влняююцих на постедуюшие этапы очистки сточных вод

Переводом в пепу могут удалятияя многие органические вещеста: синтетические высокомотекуляриме спирты и эфиры, сингетические жирные кислоты и шх соли, нафтеновыге кнслоты, алкилсульфаты и алпилсульфонаты, алкиламиды п эганоламины н многие друтие продукты органического синтеза.

Технологический режим, основные параметры н эффект фнотацин должны бнть в каждом отдельном случае определены экспериментальто. На основании имеющихся данных можно добиться эффекта очистки, например, от СПАВ, при флотации на 80$95 \%$ и выше

В технологических схемах очистки сточных вод, соответствующих по составу сооружений полной биологической очистке стоков, флотационные установки могут располагаться после первнчных отстойников. Пена сгребается скребками или сдувается воздухом с поверхности жидкости в пеногаситель, который для ускорения гашення пены оборудуется паровыми змеевиками для нагрева пены или соплами для впуска острого пара.

Для очистки небольших количеств производственных сточных вод пенный сепаратор можно устраивать, как показано па рис. 46, в виде вертккальной колонны, к верхней части которой присоединяется труба, отводящая пену в пеногаситель.

В предыдущем разделе приведены результаты векоторых опытов по очистке промышленных стоков завода синтетических продуктов. Кроме этого, рассматривался вопрос об очистке стоков завода от синтетических поверхностно-активных веществ [38], представленных в изучаемом стоке, главным образом, алкилсульфатом натрия, поступаююиия в сточные воды от производства моющего средства кПрогресс». Қак известно, алкилсу.пьфаты практически не удаляются при простом отстаивании. Их концентрация в стоке, подвергающемся биологической очистке, не должна превышать $20 \mathrm{~m} / \Omega$.

Очистка общего стока завода синтетических продуктов от алкилсульфата натрия произеодилась ири различных режимах работы трех типов лабораториых установок. Наиболее приемлемые результаты получены при следующих параметрах: для напорной флотации - давленне насыщения 2,5 ати, продолжительность насыщения 5 мин, продолжительность флотации 20 мин; импеллерной флотацин - окружная скорость импеллера 12 м/сек, продолжительность флотации 45 мин, количество воздуха $4,5-5,0$ объема на объем жидкостн; для флотации при подаче воздуха через

поннстые материалы давление под пористой пластиной 1,5 ати коничество воздуха $3,0-3,5$ объема на объем жндкости, продолжитетьность флотации 60 мин

Эчищался общий сток без добавления реагютов и при добав леєии сернокнслого алюмнния, оптнмальная лина которого была усгановлена в 350 .иг/ג.
Результаты опытов, полученные при үказаниых выше парамет рах, отражены в табп. 31.

Ta6пнда 31
Снижение концентраини алкилсульфата прн разлнчных способах

Фтотайн	Эффект очистеи от ал.ялсульфата 		Oбもel жbikoctr, ot ходящей с пеной (концентрат). в проц от обрабојаи! ады	
			гу.ту닌	$c \underset{\substack{\text { коагула- } \\ \text { днен }}}{ }$
Напорная	67	78	2.7	4,4
Имлеллерная		65	21, 7	
При подаче воздуха через пористые материалы	63	62	14,3	10,7

Следует обратить вниманне на то, что сток завода синтетичесоих продуктов отличается весьма высокой способностью к вспеНнванию (пенное число достигает 5-6 и выше)
На основании анализа полученных данных можно сделать ряд вводов и установить некоторые закономерности, характеризуюゅие процесс извтечения СПАВ пенной сепарацией илн флотанней
Нагорная фпотация некоагулированного стока дает эффект онстки всего на 2-4\% выше, чем два других способа, что нельआ оценить как существенное преимушество, тогда как напорная dлотация коагулированного стока повышает эффект очистки по флотация коагулированного стока повышиет эфф $13-16 \%$.
Недостатком импеллерной флотацин и флотации через порис тые пластины, по сравнению с напорным способом, является обцазование значительного количества жндкостн, отходящей вмес ес с пеной (концентрата).

Большое количество концентрата обуславливается содержани в алкилсульфата натрия ($30-140 \mathrm{me} / \Omega$) при одновременном рисутстии различных углеводородов и летучих кислот, способ твующих вспениванию, а также велнчиной $\mathrm{pH}=8,5-10,5$, обествчнающей максимальное вспениванне.
Объем концентрата зависит от начального содержання алкил:ульфата, т. е. от колнчества его, переходяшего в пену, от расхоца возлуха и от содержаиня взвешенных веществ в жидкости.

Важными покаэателями, характеризуюшими процес изв $п и$ ния ПАВ кмпелтерной флотацией и флотацней через порюнюи пластины, пвляются: расход воздуха (ұдельнын), идущий на извятне 1 е [ІАВ, и количество концентрата, образующегося прн изъятии I ме/a [ІАВ

В связи с тем, что при равномерной подаче воздуха скорость изъятия ПАВ в каждый момент определяется кониентрапией их
 в жидкости и занедпя ется при уменьшении ее, удетьный расход воздуха, $1 / 2$, возрастает при малых концентрацнях ПАВ (рис. 47).

Рис. 47. Графики зависимости удельного расхода воздуа.лкллсульффата натрия: алкалсульфата натрия
 sоипухӑ
таны.

удельный расход воздуха целесообразно указывать в завнсимости от средней концентрации ПАВ, под которой понимается полусумма начальной и попустимой (расчетной) конечной конщентраций IIAB

Количество концентрата, образуюшегося при снятии 1 ме/л FAB, выражается в процентах от объема обработанной жидкости. В рассматриваемом случае эти проценты получились следующими: при импеллерной флотации некоагулированного стока 0,375 , коагулированного 0,27 ; при флотации через пористые пластины некоагулированного стока 0,27 , коагулированного 0,2

При высоком пенном числе (более 3-4) возможность применення импеллерной флотации и флотации через пористые пласти. ны ограннчивается объемом получаемого концентрата, так как технически и экономически вряд ли целссообразно потучение концентрата в объеме большем, чем $10-12 \%$

Таким образом, расчет рассматриваемых флотационных установок в обцем виде сводится при небольшом пенном числе к выбору объемов сооружений и технологических параметров, обеспечивающих снижение ПАВ до необходимых жонцентраций, а при большом пенном чнсле к выбору объемов сооружений и технологических параметров, обеспечивающих максимально возможное сннжение содержання ПАВ при приемлемом объеме образующегося концентрата.
Расчет импеллерных установок и установок с пористыми пластинами по предтагаемой методике производится на основании исходных данных:

суточный расход сточных вод $-Q_{\text {сут }}$ M 3 суч;
максималыный часовой расуод - Q макся $\mu^{3} / \boldsymbol{\varkappa}$
начальная концентрашия ПАВ - нач $_{\text {нач }}$ شя $А$,
конечная концентрация $П А \mathrm{~A}-$ С $_{\text {нон }} м 2 / \lambda$;
максимально допустимое количество концентрата в проц. от объема обрабатываемой жидкости - $K_{\text {шаке }}$ проц
обцих рекомендаций:
лродолжительность флотации

- - t.mat
(в пределах 45-75 мин)
интенсивность аэрации
(в пределах 8- $15 \mathrm{M}^{3} / \mathrm{M}^{2} \cdot 4$);
статический уровень жидкости - H_{cm} м
(в пределах 2-4 к для флотации через пористые пластины
и 1,5-2 м при импеллерной флотацин)
специальных рекомендаций, получаемых экспериментальным пу rem:

удельный расход воздуха на единицу снимаемых
количество концентрата, приходящегося на 1 мг/л
снимаемых ПАВ в процентах от объема обрабаты-
ваемой жидкости
окружная скорость импеллера, місек, или внд пористы пластин (труб).
Расчетом опредепяются:
W_{Φ} - общий объем флотационных установок, $\boldsymbol{\mu}^{3}$
V - расчетный расход воздуха, $M^{3 / 4}$;

- площадь водного зеркала установок, \boldsymbol{m}^{2};
I - интенсивность аэрации, $\boldsymbol{\mu}^{3} / \mu^{2} \cdot \boldsymbol{ч}$
K - объем концентрата, $\boldsymbol{\mu}^{3} / с у т$, для слабопенящейся жидкости или
$C_{\text {кон }}^{\prime}$ - конечная концентрация $П А В, м с / \Omega$, для сиэьнопенящейся жидкости ($n>4$)
$W_{\text {II }}$ - объем пеноприемника, \boldsymbol{m}^{3}.

$$
\begin{gather*}
W_{\phi}=\frac{Q_{\text {накс. U }}}{60} t, \tag{42}\\
f=\frac{W_{\varphi}}{H_{c, ~}}, \tag{43}\\
V=\frac{\Pi v}{24}, \tag{44}\\
I=\frac{V}{f}, \tag{45}\\
C_{\text {кон }}^{\prime}=C_{\text {нач }}-\frac{\kappa_{\text {макс }}}{k}, \tag{46}
\end{gather*}
$$

где Il - суточное копичество ПАВ подлежащнх 乡далению. пля слабовспенияающейся жидкостн, кг:

$$
\begin{equation*}
\Pi=\frac{Q_{\mathrm{cyI}}\left(C_{\mathrm{Haq}}-C_{\mathrm{KOH}}\right)}{10000} \tag{47}
\end{equation*}
$$

для сильновспеннвающейся жидкости:

$$
\begin{equation*}
\Pi=\frac{Q_{\mathrm{cyr}} \cdot \frac{K_{\text {rake }}}{k}}{1000} . \tag{48}
\end{equation*}
$$

Лри расчете следует стремиться, чтобы I находилась в указанных выше пределах, чего можно достичь изменением значения (также в указанных пределах).
Объем концентрата для стабовспениваюценся жндкости

$$
\begin{equation*}
\mathrm{K}=\frac{\Gamma \cdot k\left(C_{\mathrm{Hay}}-C_{\mathrm{KOH}}\right) Q_{\mathrm{cyI}}}{100}, \tag{49}
\end{equation*}
$$

дде [. коэффициент, учитываюций увеличение объема концен трата за счет принятого способа гащения пены; при трата за счет принятого сиособа \quad обогреве пены змеевиками $\Gamma=1,0$ при дождеванни $\Gamma=$ обогрев
$1,3-2$
Объем пеносборника $W_{\text {п }}$ до.лжен вмещать в себя расчетный объем пены, которьй может быть определен по групие формул
[69].
Как уже упомнналось, напорная флотация обладает, но сравнению с двумя другими рассмотренными способами флотационного упаления ПАВ, существенным преимуществом в части оо́ъема ббразуюцегося концентрата (что особенно важно при очист
 ке сильнопенящихся жидкостей), так некоторым пренмуществом в эффективности удаления ПАВ.

Рис. 48. Влияние содер жания взвесей на эффект извлечения алкилсульфата натрия напорной флотацией:

- с добавлением коагулйк та: 2 2-6е

Недостатком напорного способа по отношению к очистке стоков от ПАВ является также значительная зависимость эффекта очистки от содержания взвешенных веществ (рис. 48)
Таким образом, при очистке сточных вод от алкилсульфата натруя напорную флотацию можно применять при концентрации пзвешен ных вецеств выше $200-250$ мә/л. Если же она менее 104

100 me/л, то напорная флотацин, как способ очисткн от ПАВ, матоэффективна, поэтому необходимо вводить коагулянт в боіьлоэффекти
В Московском инженерно-строительнои ннституте на основа нии исследований, выполненных на тонкосуконной фабрике и кожевенном заводе, рызработаны рекомендации по уда.тению синтетических заводе, разработаны рековешеств из сточных вод этих производств [69]. Для эдаления СПАВ лринлт способ ф, отаиии с диспергированием воздуха через пористые матерналы. При очистке сточных вод тонкосуконных фабрнк установлены следующие параметры фиоташин:

Продопжитетьность флотаине, аияі
$30-45$
$10-12$
Пбъем образующегося при разрумении пены концентрата - -5% от объема обработанной воды.

При этом снижение неноногенных ПАВ составляет 60%, аннонактивных - 41.5%. На $25-40 \%$ снижаются такне пожазатели как БПК и ХПК, концентрация вэвешенных веществ уменьшается на 70%.
При очистке стоков кожевенного завода по схеме, приведенной на рис. 37, параметры флотации составляют:


```
Эффект удалення ПАВ, прои - ; 28%
```

Схема установки, разработанной в МИСИ. для очнстки больших количеств сточных вод от СПАВ, приведена на рис. 49

Радиоактивные изотопы, попадаюшие в жидкие отходы при их получении или использовании, могут тем или иным способом $[53,66]$ концентрироваться в осадке, который подлежит выпари ванию и эахоронению. Захоронение радноактивных отходов очень сложная и дорогостоящая операщия, поэтому уменьшение объема осадков может быть постигнчто флотациеи. Гидроокиси металлов (железа, алюминия) могут быть хорошими сорбентами металлов (жела, алтивних нзотопов При подборе соответству для многих радиоактивных изотопов. При подооре соответству юшего флотореагента, осадок гидроокисн, занимающий значи" тельный объем (до 2% от количества обрабатываемой воды), мо жет быть уплотнен в 3-4 раза и более, в зависимости от началь ной концентрации осадка. Так, керосиновый контакт Петрова явился хорошим флотореагентом для флотации осадка гидрооки си железа [3].

В Уральском политехиическом институте больщие работы проводятся по извлечению из сточных вод радиоактивных изото пов флотационным способом [1,53]. Причем, исследования здесь вепугся по двум направленням, во-первых, подбор «носителя» избиратотьо сорбирующего определенный изотоп, и, во-вторых создание условий и установление технологических параметров

для флотации данного «носителя». Так, напрнмер, показано, что ${ }^{89} \mathrm{St}$ может быть извлтечен из раствора путем сорбции его осадками фосфоровольфраматов алкитаммония с последуюдим выде-

Рис. 49. Схема флот
для удаления СПАВ:
 5 - пеноприемннк (сборнин концент
воздупине трубы для сдуа пены. пеннем осадков из жидкости флотацией. Такне вноситети» н условия их флотации подобраны для большого числа различных изотопов.
Различные стодные воды нмеют бактериальные загрязненин. Поэтому для их устранения сточные воды на конечном этапе очистки подвергаются хлорнрованию. Однако в отдельных случаях может иметь аначение удаление бактериальных загрязнений на отдельных стадиях очнстки и тогда метод, позволяющий досткчь наибольшего извлечения бактерий нз сточной жидкостн, будет иметь определенные преимущества перед другими.

Флотационному выделению бактерий из жидкости посвящены некоторые работы [71, 85, 95]. Хоппер, нэучивший применение флотации для очистки водапроводной воды, нашел, что уменьшение количества бактерий при флотации достигает 90% и более. При бактериологических анализах сточных вод концентрация бактерий в пенном слое на лабораторных флотационных установках может облегчить нахождение 60 лезнетворных бактерий [95].

ФЛОТАЦИОННОЕ УПЛОТНЕНИЕ ОСАДКОВ СТОЧНЕХ ВОД

В результате развития промышленного и коммунального стро ительства непрерывно увеличивается количество сточных вод и соответственно осадков, образующнхся при нх очистке. Количество образующихся осадков на станцнях биологической очистки составляет $0,6-1 \%$ от объема сточных вод, а при другнх методах очистки воды, например химическом, возможно их образование 3-10\% от объема сточных вод.
 ся обычно за 6-18 4, а обработка осадка в метантенках дтится 10-15 суток с подсушкой его на иловых площадках до несколь ких месяцев. Поэтому проблема сокращения объема осадков, продолжительности их обработки н тнквидации являяется весьма актуальной, заслчживающей детального изучення
При любом методе обработки осадға первой ступенью мвляется уплотнение. Конечный продукт уплотнення - такой осадок, который еще сохраняет все фнзяческие свойства жидкости. При этом осадки следут рассматривать как дислерсные системы, в которых дисперснои фазой являются твердые частнџы, а дисперсной средой - жидкость. В результате такого уплотнения удаляется большая часть своооднон воды, т. е. воды, энергия связи которой со структурой твердой фаэы осадка минимальна.
Эффективное уплотнение является важной частью общей проблемы обезвоживания осадка. При этом значнтельно уменьшается его объем и вследствие этого и строительный объем метантенков в случае сбраживания осадка и увеличнвается производнтельность такого оборудования как вакуум-фильтры, центрнфуги, фильтр-прессы при неханическом обезвоживании. Қроме того, сннжение объема осадка приводит к уменьшеник затрат прн его транспортировке и накопленин.

При подаче осадка на сбражнвание благодаря предварительному его уплотнению увелнчивается пронзводительность метантенков или уменьшается их объем; уменьшается расход тепла, необходимый для создання определенной температуры в метантенке; уменышается нагрузка «по воде» на итовые плошадки; сокращается объем иловой жидкостн, каторая вновь возвращается на станцию.

У плотнение осадков сточных вод является обязательным и пе ред обезвреживанием его методами «мокрого сжигания». Для того, чтобы этот процесс, был энергетически приемлемым, необходимо, чтобы подающийся в реактор осадок имел теплоту сгора ния порядка $265 к к а л / A$. При средней теплотворной способност активного ила и осалка первичных отстойников 4200 ккал/ка су мого вещеста сыедует чтобы влажнасть осадка была не более 94%.

Если осадки первичных отстойников сравнительно легко уплотняются при отстаиванин до влажности 93-95\%, то осадки вторичных отстойннков, биологические шламы, особенно актив ный ил после аэротенков, работающих на полную очистку сточ ной жидкости, уплотняются значительно хуже. Это объясняется специфичностью физико-химических свойств активного ила: большой структурообразующей способностью, высоким содержанием связанной воды, незначительным объемным весом. В то же время ботьшой интерес в перспективе представляет именно раздельная обработка осадков с выделением активного ила как сырья для орвлечения витаминов и белковых веществ. В активном иле

содержатс! празных количествах витамины B_{2} и B_{12}, тиамин, рнбофловин, ; лд никотнновой клслоты, Биотин, n-аминобензойная кислота, пиидоксин, холин, пантотеновая и фолиевая кистоты, кислота, пн[иддксин, холин, пантотеновая и фолиевая кнстоты,
щианокобаломин, а также 17 различных аминокислот [93]. Активный нл используют для удобрения, он превосходит навоз, и эффективнее, чем сырые и сброженные осадки [105].

В настоящее время в практике обработки осадков встџечаются различные способы уплотнення.

Способ гравитационного уплотнения получнл широкое применение в виду простоты конструкпии и эксптуатации уста!овок. Конструктивно илоуплотнители выполняются в внде радиальных ити вертикальных отстойников. Осадок поступает в среднюю часть отстойника и хлопья ила осаждаются в виде илового слоя на дне. Уплотняющийся нл перемещается скребком к центральному колодиу и удаляется. Иловая жидкость перетивается через ному ко.кдду и удаляется. Һловая жидкость перелива

Однако даже 5-15-часовое пребывание нзбыточного активного ита нз аэротенков в травнтационных уплотннтелях не иозволяет получить ил с содержанием сухих веществ более $2-3 \%$. Кроме того, при залежнвании ил загнивает, выделяя при этом газы, всплывает и выноситсл с иловой жидкостью. Процесс анаэробного разложения, возникаюший в уплотнителях-отстойниках, неблагоприятно сказывается на дальнейшей обработке такого осадка, особенно на вакуум-фильтрах. Увеличивается расход коагупянта и создаются антисаннтарные устовия работы в цехах механического обезвожинання

С целью ннтенсификации процесса уплотнения активного ила осушествлялось его осаждение в смеси с уплотняющими добавками (клорное железо, серная кнслота, известь, железный купорос, диатомит, зола). Однако снижение влажности ила в течение $24-96$ ч уплотнения было пезначительным, содержание сухих веществ в уплотненном иле не превышало 3%.

Центрифугирование осадка для его уплотнения состоит в использовании центробежной силы, с помощью которой в сотни раз увеличивается сила тяжести твердых частиц, а, следовательно, ускоряется процесс отдсления их от воды.

В лоследние годы появижся ряд новых высокоскоростыых установок, использующихся не только для уплотнения осадков (дисновок, использующихся не толтифуги), но и для более глубокого их обезвоживания (шнековые центрифуги) с доведением влажности осадка до 75% н ниже.

Производительность центрифуги по кеку зависит от исходной концентрации ила по сухому веществу. Так, при повышении конщентрации активного ила люблинской станции аэрации с 0.4$0,6 \%$ до 2-3\% производительность по кеку возроста с $1,5-3$ до $8-15 \kappa 2 / 4$. В дальнейшем выделенный кек дегельминтизируется, а фугат иснользуется для биохимической очистки сточных вод вместо циркуляционного активного ила.

Замораживание осалков при темиературе - $5-10$ с и последуюшее оттаивание изменяят их физнкохнмические свойства, благодаря чему резко унелитивается их водоотдача эа счет перераспределения различных форм связи влагн, увеличивается обьраспределения различных форм связи віани, увеличнваетяя обв-
ем свободной воды за счет уменьшення общего комиества связанной влаги.

Проведенные исследования [62] показали. что замораживание и оттаивание приводят к коагулядин твердой фаэы осадков, поэтому нет необходнмости в хныических реагентах в процессе ид обеэвоживания. На водоотдачу осадиа влняют нсходные своиства и тип обраб́атываемого осадка. Зачораживанию подвергались препварительно уплотненный активный ил в,
 сырон осадок влык также сброженныи осадок люблинской станции. В резутьтате оттаивания влажность актнвного ита непосредетвенно посте отвода образовавшейся воды была $88-92 \%$, а сырого осадка -
$82-85 \%$. 82- 85%

Последуюмее более плубокое обезвоживание осадков пронзводилось на вакуум-фильтрах наливного тина с получением кека влажностью $81-83 \%$ для активного ила, $75-78 \%$ длля сброженного осадка и $70-74 \%$ для осалка лервнчных отстойников.
Флотационное уплотнение осадков рассматривается как процесс подъема на поверхность частиц осадка за счет прилипания их к пузырькам воздуха или газа. Причем, если при осветлении флотацией сточных вод на первом месте стоит фактор скорости и полноты осветления жидкостн, то при уптотнении осадка скорости и степени уптотнення шлама.
Насыщенне осадка пузырьками газа (воздуха) можно производить различными способами - папор ным, вакуумным, безнапорным, электрофлотацией, химическим и биологическим путями.

Возможность ислолвзования флотацин для упнотнения осадков и илов давно привлекала вниманне исследоватетей и инженеров как у нас в стране, так и за рубежом [100]
Данные, полученные в результате наблюдений за работой неоторых установок по флотационному уптотнению осадков сточных вод, представлены втабл. 32 [93]
В конструктивном осормлении нанбольшее распространение за рубежом получили установкн напорной флотации. На рис. 50 представлена технодогическая схема уплотнитетя тиа «Рекс». представлена технологическая схема уплотннте.я тплотния образуется между спошной частью впускной перегородки и нижней кромкой погружной, но не доходящей до дна, водосливной перегородки
Время пребывания жидкости, включая рециркуляционный расход, в зоне флотации составляет 15 — 20 мин, а в зоне уплотнения может составлять несколько часов.
Представляет интерес установка, иредложенная Сайбаттари (рис. 51), которая состоит из герметической емкости (на ри-

Taб．tица 32
Результаты пронзводспвенних исиытаний по фяотационному уплотненню осадков сточных вод на раз．иичных станиннх США

Местонахожддай yctanosinh		Пронзводатель－ ностb，ticyt		Gодержамие сухого нриестна н оcaдte，пpoll．					
				capas			уплотненнои		
			$\begin{aligned} & \frac{\bar{x}}{\underline{x}} \\ & \frac{i}{z} \\ & \hline \end{aligned}$	$\frac{x_{4}^{4}}{\frac{1}{2}}$	$\begin{aligned} & \text { in } \\ & \text { 范 } \end{aligned}$	$\begin{aligned} & \text { 妾 } \\ & \text { 垃 } \end{aligned}$	䒨	至	$\frac{5}{2}$
Дальтон									
Ашт．Джорджня	AO	4，55		－	1，29	－	7.8	6.1	4.8
ш：Джорджия	AO	57，3 34， 2	16，7	2，7	1，90	1，1	8，3	7，4	6.4
Orpyr Haccay шт．Нью－Морк	A	17.19 .6	4，0	1，25	0，81	0， 55	7.2	4，9	3，3
Okpyr Haccay									
Шит．Ньо．Порк	A	49.5 28.7	15，9	1，00	0，77	0.48	4，75	3.7	2，82
шт．Мичитан	A	0，5：1 0.57	0，54	0，50	0.45	0.34	4，9	4.6	4，4
Сан－Хосе шт．Kа－ ．тифорння	AO	620． 458	310	2，79	2，30	1，79	8，10	7.1	5.87
Қурс Бреверн									
шг．Колорадо	A	－ 3.6	－．	\cdots	0，77		－	4．1	－－
गевиттаун									
шт．Пенснльвания	A	－ $4 . \quad \begin{aligned} & 3,8 \\ & 4.0\end{aligned}$	1.5		0.80	0.40		6,5	
Бойс шт．Айдахо	A	4.44 .0	1.5	0，50	0，46	0.40	4，10	4，0	3.60

прриме
атстйнчков．
рнсунке не показана），куда подается порция сточной воды после биохимической очистки в смеси с активным илом．Туда же через аэратор подается сжатый воздух для перемешивания и насыще

Pис．50．Схема флотационного илоуплотнителя типа ${ }_{\star \text { Рекс }}$

ния жндкости．Нз герметнцескй емкости жндкость，насыщенная поядухом，по трубопроводу，заканчиваюшемуся патрубком сот верстиями，под давлением，существующим в герыетической ем кости，подается в прямоугольний реэервуар．пде происходит фло тация актнвного нла．Сфлотиованный аятивный нл удаляегся транспортером в бункер и далее винтовнм транспортером（на

рис．показан с торца）выводится из флотатора．Подиловая жид－ кость，проходя под перегородкои，удаляется через водослив．Гру－ бодисперсные примеси，выпадаюцие в осадок，удаляются вин－ товым транспортером．При периодах наполнения и выпуска жид－ товти из терметической емкости по 0,5 мик и давлении воздуха

В большинстве известных технологических схем равота флота－ ционных илоуплотнителей осуществляется с рециркуляциеи жид－ кости или с рабочей жидкостью．Рециркуляционную или рабо－ чую жидкость насыщают воздухом под давлением $3,5-5,0$ ати и подают в уплотнителts．Для эффективной и быстрой флотации ила необходимо выдерживать определенное отношение расхода жидкости，насыщенной воздухом，к расходу уплотняемого ина．
Указывается［90］，что с увеличением этого отношения с 1 до 2 скорость всплывания ила увеличивается в 4 раза，а с 1 до $3-$ в скорос роскольку увеличение количества рабочей жидкости не 6 раз．Посолия только обеспечивает но также улучшает условия всплывания пловых часхода не при－ ствие разбавления ила），то возрастание общего расхода не при－ водит к увеличению емкости флотокамеры в той же пропорции．

При : цаино подобраином соотношентн „бочей жидкости и ила рис ротокамеры может окаэаться даже меньше, qем при ра боте но схеме с прямым пасыщением ила воздухом
В качестве рабочей жидкости иожно употреблять сточную жидкасть прошелшую механическую ити биологическую очистку, а также подиловую жидкость флотационного эплотнителя. дучше всего нспользювать биологнчекки очиценную сточную жидкость, а нодиловую жидкость из уллотнителя сорасывать в аэ ротенк, во избежание накапливания во |ইлотаиионной установке большого количества неф, потируюцихся веществ. что может за грулнить работу напорной системы
Представляет интерес работа по применению нагорной флоацин для уплотнения нзоытачного активного ила, выполненная на Люблинской и Кунцевской станциях аэрации $[28,29]$.
На основании проведенных исследований была предложена схема флотационного илоуплотшителя и даны его некоторые предварительные расчетные параметры. Здесь предусмотрено двух ступенатое уллотнение ила во флотационном резервуаре ло влажности $98,8-98,5 \%$ в течение 20 мин и в илоуптотнителе до конечной влажности $96,5-96 \%$ в течение 2 и. В илоуплотни теле происходит вторичное всплывание выходящего из флотационного резервуара ила беа дополнительното насыщения его воз духом.

При конструировании обоих резервуаров рекомендовалосв при внмать рабочую глубину $1,0-1,5$ м, а соотношенне длины к ши рнне - более 2:1. Всплывший и уплотненный ил улалялся скребковым механизмом, скорость движения которого 0,91,4 н/мин. Независимо от общей толщины всплывшего ила скреб кн рекомендовалось погружать во флотационный резервуар на глубину не более 5 cm , а в илоуилотнитель - не более 10 см, чтобы не нарушить всплывание слоев ила
Н. А. Лукиных были также проведены исследования, свидетельствующие о возможности применения существующнх методов обработки унлотненного флотационным методом ила, т. е. сора жнвання его в метантенках и обезвоживания на вакуум-фильт рах. Эффект обезвоживания активного ила, уплотненного отстаи ванием и флотацней, одинаков ($80-82 \%$), но в последнем случае расход коагулянта, в качестве которого применялось хлорное железо, меньше ($5,5 \%$ вместо $7-7,5 \%$ от веса сухого вещества актнвного нла). Қроме того, прп вакуумфильтрацин флотированного активного ила фильтрат содержит незначительное количест во взвешенных веществ $33 \mathrm{~m} / \boldsymbol{/ \lambda}$, в то время как при обезвоживании отстоенного нла количество взвещенных веществ состав тяет 28-330 мг/д
Следует упомянуть также о попытках уплотнения осадков за чет пузырьков газа, выделяющегося при химических реакциях
В одной из первых работ в области химической флотации осад ков сточных вод в качестве химического реагеита использовался

гипохлорит кальция, который пря добавленин к и, пу медтенно растворяется с выделением хлора и кислорода [104]. Требуется определенное количество реагента, чтобы получить достаточное количество газа. Процесс химической 中, потацнн идет очень мепленно ($24-48 ヶ$), но содержание сухого вещества в уплотненном активном нле повышается до 10 раз по сравненио с исходным. Аналогичные результаты получены и в других работах [87, 88]. В связи с тем, что флотационное уплотнение осадков долгое ремя не находило применения в отечественной практике, возника нобходимость в разработке более конкретных и полных рекомендаций по применению данного метода для уплотнения садков и илов.
Такая работа в отношении нзбыточното автивного ила б́ыла выполнена в Украннском институте инженеров водного хозяйтва. Усследования выполнялись на очистных сооружениях Ровенского льнокомбнната и Невинномысского химкомбнната. Предварительно были проведены лабораторные опыты по выбору оптимальных способов насыщения ила воздчхом
Способы механического диспергнрования воздуха и подачи его через пористые материалы, осуцествляемые прн обычных техно логических параметрах могут обеспечить снижение объема потие 10 - 20% при сохранении высокой концент уплотняемого ила на 10-20\% при сохранени
рации сухого вешества в поднловой жидкости
ации сухого вещества в поднловой жидкости.
Электрофлотацня при расходе электроэнерги $5-7$ квт $\boldsymbol{\text { и }} / \boldsymbol{\mu}^{3}$ беспечивает уменьшение объема ила на 65-80\% (при содержании сухого вещества в уптлотняемом иле $8-4,5 z / \wedge$ и кониентрацию сухого вещества в подиловой воде $150-200$ ме/л). При непосредственном иасыщении нла воздухом удавалась добнться уменьшения его объ доо в 2 - 4 раза в зависимости ема в 2-4 раза в зависимости от давления насыщения в наности уплотнения (рис. 52) Бьло установлено, что перемешивание ило-воздушной смеси в напорном баке существенно сказывается на дальнеишем уплотнении ила. Так, насышение ила воздухом при давлении 2 ати с перемешиванием смеси даст такое же упнотнение, ка ремешивания.

Недостатком прямого насыщеиия ила волдухом авляется вы сокое содержание сухого вещества в подиловой жидкости (400 $800 \mathrm{~m} / \Omega)$, что связано с дислергированием хлопвев активного

Рис. б2. График уплотнення нла во времени при различной степени насыщения его воздухом (дввленин в напорном баке).
4.: рабочим колесом насоса или при перемешивании в напорноме 6. в. Добавление флотореагентов н флокулянтов в уплотняемый и.л снижало концентрации сухого вещества в подиловой жидкости на 20-25\%, что, разумеется, нельзя считать удовлетворительным. Вторая причина заключается в том, что того количества волдчха, которое может быть максимально подано в жидкость при лрямой напорной флотации, недостаточно для лодъема в пенньй спой всего нта.
Поэтому за основу в датьнейших исследованиях была принята напорная флотация с использованием рабочей жндкостн, поскольку только этот способ наблщения ила воздухом обеппечи вает неразрушаемость хлопьев активного ила и позволяет подобрать такое количество воздуха, которое окажется достаточным для подъема всех частичек нла в пенньй елой (табл. 33).

Tаб.пида 33
Влкянне количества раб́очей жндкости на эффект : лотнення ила н качество , подиловой воды

Наимекованне локазателер	Отиопенне объема рабочеन жидкости к объему нла			
	0	1	2	3
Содержание сухого вещества, мг/s: в осветленнон смеся подиловой и рабочей жндкости	900-1000	330-420	100-150	20--30
в пересчете на подиловую жидкосты	900-1000	660-880	300~450	80…120
Объем уплотненного ила, проц, от исходного	35-45	30-33	19-21	12-13

Последующие работы выполнялись на полупроизводственных экспериментальных установках двух типов - горизонтального и вертикального. Схема флотационной установки с горизонтальной флотокамерой объемом 1 м представлена на рис. 53, а схема чстановки с вертикальной фтотокамерой объемом 3,3 м 3 - на рис. 54. В обеих схемах предусматривается раздельная подача уплотняемого ила и рабочей жидкости, а также перемешивание водовоздушной смеси в налорном баке насосом.
Высота вертикальной флотокамеры 3,2 м принята в соответствии с высотой типового илоуплотнителя-отстойника (III-4-18-734, тнп 4) Союзводоканалпроекта с тем, чтобы полученные данные могли быть использованы для переоборудования последнего во флотационный илоуплотнитель.
Всесторонние исследования, проведенные на экспериментальных установках, позволили разработать рекомендации по применению и проектированию флотационного уплотнения активного ила.

114

Рис. 53. Схема эксперименталиной установки горизонгалиного типа для флотационного уплотнения оса,дков сточнеіх вод:

 лающего на упот

Pис 54. Схема экспериментальной флотационной установни Рнс.

На флотациоине уппотнении :осредством наиорной флотацин с насыщением воздухом рабоч: жидкости можег подаваться из быточный активный ип поспе полной и нелатной бнологической очистки. Насыयение рабочей жкдкостн аоздухом осушествляется в валорнон баке в течение $2-3$ мин три давлении $2-4$ ати. От пошение коэнчества рабочей жндкости к об́ъему уптотняемого и, па составльет 2-3. При проектнровании и подборе оборудования это отиошсние должно быть увяэано с давлением и продол житетьнестно насынения таким образом, чтобы удельный расхол воздуха, выдетяющегося во флоташионной камере, составлял 10-12 н на \ке сухого вещества активного ила. При этом можно восполязоваться формутой

$$
\begin{equation*}
n=12 \frac{B_{\mathrm{T}} C}{(P-1) b-\left(P b-b_{\mathrm{a}}\right) e^{-\overline{k_{\mathrm{T}} t}}} \tag{50}
\end{equation*}
$$

где $:$ - отношение количества рабочей жидкости к количеству уплотняемого ила:
B_{T} - вес 1λ воздуха при данной температуре, \boldsymbol{z}
C - концентрация активного ила, \imath / λ;
P - давление насыщения, ати.
Остальные обозначения, как в формулах (10) и (11).
Для лучшего растворения воздуха в напорном баке предусмот рено перемешивание водовоздушной смесн насосом, производительность которого составляет $30-50 \%$ от расхода рабочей жидкости.

В качестве рабочей жидкости рекомендуется использовать очищенную сточную вопу после вторичных отстойннков или же воду, выходящую нз флотокамеры. Принципиальная конструкция флотокамеры представлена на рис. 55. Продолжительность пребывания смеси рабочей жидкости н ила в рабочей зоне камеры $40-60$ мин. Высота рабочей зоны - $2-3$ м. Избыточный ил подается в верхнюю часть камеры, а рабочая жидкость - в ниж нюю. Ил и рабочая жидкость но птощади камеры распределя ютел радиальными распределительными трубами с отверстиями диаметром 0,5-1 см. Скорость выхода жидкости из отверстий принимается для труб, распределяюцих ил, 0,7-1 м/сек, для труб, подающих рабочую жидкость - 1,8-2,2 м/сек. На иловых трубах отверстия устраиваются в верхней части, на трубах работрубах отверстия жипкоти - сбоку
Смесь подиловой и робочей жидкости, освободившаяся от иловых частиц, поступает в ннжнюю часть вертикального стакана
 верхнюю часть его и отводится через выпускную камеру за пределы установки.

Шлам, собирающийся на поверхности, периодически через 34 и (по достижении влажности $94,5-95 \%$), спиральным скребком сбрасывается в шламоотводящнй лоток, в котором устанавлива ется боковой скребок для предотвращения палипания шлама на

стенки. Скорость вращения «ю, пбкл принимается из условия, что бы уборка уптотненного шлама с поверхности не занимала бо лее 15-20 мин (5-8 об/исс). Глубина погружения скребка в ид 10-15 см (конструкция скребка должна предусжатривать возможность регулировання глубины погруження

Рис. 55. Флотационный илоуплотнитель пронзводительностью $100 \boldsymbol{x}^{3} / 4$ (по суммарному расходу ила и рабочей жидкости):

 иловон н рабочея жидкости: 8 - скребок-спираль Архимепа; 9 - пламоогводяни

Количество уплотненного ила в расчетах следует принимать в 20% от объема уплотняемого, а содержанне сухого вещества в смеси подиловой и рабочей жидкости 30-50 ме/л.

Флотационную камеру можно проектировать и в виде прямоугольного резервуара с отношением длины к ширине от $5: 1$ до 8:1 со съемом уплотненного ила скребковым транспортером, причем при длине резернуара более $\subset, ~ м$ сдвиг ила целесообразнее осуществлять по более короткому пути, т. е. по ширине камеры.
Включение в технологическую схему обработки осадков флотаиионных илоуплотнителей вместо илоуплотнителей-отстойннков приведет, согласно технико-экономическнм подсчетам, к снижению капитальных затрат на сооружения по обработке осадка на $15-25 \%$, а эксплуатационных - на 5-10\%.

Қриыи уплотнения активного и.та флотацнси, нами была изучема ши:яожность џптотнения флотацией осадшюп некоторых пролышліныных стоков
Учтю"ызая, пто на ряде заводов искусственного волокна очистка прфмымленных стоков ведется путем отстанвания, былн проведены исстедования по ұплотнению осадка флотацией

Осадок, который образуется при очистке сточных вод вискозного пронзводства в отстойниках, характеризуется высокой влаж ностью, достигающей $98-99 \%$, в в эависимости от производ ствевных мощностей заводов искусственного волокна может со став. 19 ть $1000-1500 \mathrm{~m}^{3} / с у т$ и более. Уплотнение осадка под действием собственного веса пронсходит очень медленно

Практика проектирования показывает, что в отдельных слуяаях в силу удаленности шламонакопителя от завода возннкает вопрос о целесообразности механического обезвоживания и вывоза осадка. Это обезвоживание, как показывает зарубежная лрактика и работы наших исследователей, может осуществляться в центрифугах, на вакуум-фильтрах, на фильтр-прессах. Қоличество, стоимость, а также норматьнын режим таких установок находятся в непосредственной зависимости от количества и влажности исходного осадка. В связи с этим прежде, чем направлять осадок на механическое обезвоживание, его необходимо предварительно уплотнить более простым способом

Флотацнонное уплотнение осадка изучалось на очистных сооружениях Каменского комбината искусственного волокна. Осадок, образующийся при отстаивании, подвергался напорной флотации. Насыщение воздухом производилось центробежным насосом или в специальном цилиндре, подключенном к трубопроводу сжатого воздуха (см. рис. 14). Давление в цилиндре созда-

Таблица 34
Результаты флотационного уплотнения осадка
сточных вод заводов искусственного волокна

Влажность осадка, прои.			Количество несфлотировавие -ося осадка в прои. от всегообъема
	отстанвання. 4		
	0.5	3	
98,55	98,00	97,24	1,00
98,71	97,81	97,09	1,10
97,52	96,45	95,02	7,86
98,27	97,79	97,32	1,83
97,83	97,23	96,31	6,70

валосв в пределах 2,5-3,5 ати, продолжителыность насыщения осадка воздухом составляла 2-5 мин. Насыщенный воздухом осадок выпускался в мерные сосуды, где отстаинался в течение

3 ц. Влажность н объем осадка через определенные промежутки времени фиксировалнсь.

Некоторые результаты опытов приведены в табл. 34.
Такнм образом, прямой напорной флотацией можно эненьшить объем осадка примерно вдвое.
Для достижения более высокого уплотнения осадка (трех-четырехкратного) флотацню необхолимо вести при значительно большом количестве измельченнопо воздуха, т. е. применять напорную флотапию при подаче воздуха с рабючей жидкостью.

ОСОБЕННОСТИИ ПРОЕКТИРОВАНИЯ, НАЛАДКИ И эКСПЛУАТАЦИи
 ФЛОТАЦИОННЫХ УСТАНОВОК

В настоящее время проектирование флотационных установок, предназначенных для очистки сточных вод, осуществляется на основанни отдельных рекомендацнй, разработанных в результате исследований по очистке тех или иных категорий стодных вод.

Выбор способанасыщения стоков воздухом и конструкщни флотационных установок, как правило, делается на аснове материалов, полученных при изучении методов очистки данных сточных вод. При этом следует учитывать, что импеллерная и пневматическая флотации, а также флотация с диспергированием воздуха через пористые материалы более приемлемы для очистки стоков от нефти, масел, жиров (если стоки загрязнены преимушественно этими веществами) и для пенной сепарации растворенных соединений - СПАВ и др.

Флотационные установки большой производитетьности (более 150-200 $\mu^{3}(\boldsymbol{4})$, а также при значительном содержании в стоках оседающих (нефлотирующихся) веществ, необходимо применять установки вертикального типа; горизонтальные же (если отсутствуют в стоках оседающие примеси) при производительности до $150-200 \mathrm{~m}^{3} / 4$, а при наличии оседающих примесей - до 100 $120 \mathrm{M}^{3 / 4}$

Размещают флотационные установки, работающие с накоплением и периодическим соросом шлама, в отапливаемых помещения (во избежание замерзания шлама на поверхности), Установки с непрерывным сбросом шлама при среднегодовой температуре до $+3^{\circ}$ помещают в отапливаемых помещениях, при среднегодовой температуре от $+3^{\circ}$ до $+6^{\circ}$ - в легких неотапливаемых, а при более высоких температурах их можно располагать на открытом воздухе. В помешениях должна быть вентиляция, обеспечивающая пятикратный обмен воздуха в 1 ч, а при электрофлотации и электрокоагуляции-флотации кратность воздухообмена определяется расчетом, исходя из количества вы8^{*}

деляюшегося ири эгюю小итизе водорода, чтобы не создавалис взрывоопысиые коиц: , вини. Над электюддным отделением ус траивается местный отшос воздуха.
О6орудуются флотаиионные камеры скребковы ми механнзмами для удалення шлама, регуляторами уровня во ды в камере, регуляторами количества сорасываемого шлама трчбопроволами для выпчска осадка, опорожнения
Скребковые механизмы могут применяться различных конструкий в зависимости от типа и размеров флотационных камер. Скребковые транспортеры практически пригодны для прямоугольньх флотокамер любых размеров, как с периодическнм, так и с непрерывным соросом осадка. Нелригодны они только для периодической уборки хорошо уплотняющегося шлама, содержа щего скленвающие (жиры) н волокнистые (шерсть) вещества (войлокообразная масса), как например, шлам шерстежироулавлнвателей кожевенных заводов. Гри таких шламах сле дует применять скребок-тележку, длина пути которого не полжна превышать 810 м. Для флотокамер кругпой формы рекомендуется применять скребок тина синприменять скребок Архимеда. Обычная глубина погружения скребков в шлам от $1 /$ до $1 / 4$ толцины шлама (но не менее 8-10 см), а ножа скребковой тележки - $1 / 2$ толщины шлама. На рис. $56, ~ а$ и б показаны две схемы расчетного расположения уровня шлама и низа скребков относительно борта шламоотводящего лотка. Схема а применяется в тех случаях, когда предусматривается съем шлама с влажностью 93$94 \%$ и выше, и его дальнейшая гидравлическая транспортировка (самотеком), а схема б нспользуется при бои уровня шиама относительно борта шла-
д- для текучего шлама: б-для нетекучего

или прорыв воды в шламоотводящий лоток. Более тонкая регу тировка в дальнейшем осуществляется шибером или задвижкой, станавливаемыми на шламоотводящей трубе. Скорость движе ния скребков на схеме 6 может бытб прннята $10-15$ см/сек. Чис по оборотов скребка типа спирали Архимеда следует принимать 5-10 об/мин в завнсимости от диаметра так, чтобы охружная скорость находилась в пределах $10-15$ см/сек. Во всех слуцаях целесообразно предусматрнвать возможность регулирования ско рости движения скребков в пределах двукратного уменьшения и увелнчения ее против расчетной.
Расстоянне между скребками (см. рнс. 56) следует принимать тем меныше, чем более плотныи шлам образчется при флотации Элсктродные камеры электрофлотационных установок покры ваются изнутри электроизоляционными материалами, например, винипластом для предотвращения утечек тока.
Во избежание образования отложений на этектродах и для нх равномерного срабатывания, предусматривается лереключенне полярности электродов (лля профилактики один раз в смену, при неблагоприятном качестве стока два-четыре раза в час).
Питанне электродной системы должно осуществляться постояиным током от выпрямителей, позволяюцих регулировать раянным током от выпрямителй $\mathbf{\text { бочий ток в диапазоне } 3 0 - 5 0 \% \text { от расчетного, что обеспечит }}$ более экономную работу установки. Напряжение электротиза по соображениям техники безопасностн не должно превышать 36 в.

Соеднняются электроды как по монополярной, так и по биполярной схемам. При очистке жидкости с невысокой этектропроводиостью предпочтительнее монополярная схема. При ширине электродной камеры более 1 м электродную систему лучше проектировагь в виде отдельных блоков с соединением электродов внутри блоков по одной нз упомянутых схем. Это облегчит изговнутри олони, монтаж и замену электродной системы во время эксплуатации
управление работой флотапионных устано вок должно быть сосредоточено непосредственно у флотацион ных камер (рабочее место оператора). Оператор с пультов управления должен осуществлять следуюцие основные операции

1. Управлять работой насосов, подающих сточную жидкость в камеры флотации.
2. Управлять работой насосов рециркуляции или рабочей жид кости н регулировать рециркуляционный расход или расход рабочей жидкости
3. Регулировать давление, создаваемое насосами в напорном баке или напорном трубопроводе.
4. Регулировать подачу воздуха для флотации.
5. Регулировать подачу сточной жидкости в отдельные камеры
6. Нзменять электрические параметры работы электродной системы (при электрофлотацин).

лее низкой его влажности и дальнейшей механнческой транспортировке. Скорость движения скребков в схеме а рассчитывается так, что количество шлама, подгоняемого скребками к шламоотводящему лотку, в единицу времени равно количеству шлама, переливающегося через борт лотка. При несоответствии этого происходит перемешивание или разрушение шлама скребками,

7. Осуществяять дозированне реагептя (если их подача предусматривается)
8. Включать н выклюцать скребковые механизмы и регулировать скорость их движен ня.
9. Управлять задвижками или шиберами на выпусках очищеннай воды из каждой камеры.
10. Управлять задвижками или шиберами, регулирующими выгпуск шшама из каждой камеры
11. Включать механизмы для транспортировки шлама (если они предусмотрены).
У пультов управления должны быть сосредоточены все необходимые контролнруюшкне, показывающие и регистрирующне приборы.
Обязательна установка двух пультов управления: первый - у места влуска стоков в камеры, второй - у места выпуска стоков и сброса шлама. С первого пульта осуществ.тется чправление опералиями с 1 по 7 , а со второго - с 8 до 1 . При большой длитне и значительном количестве камер желательно, чтобы с каждого пульта можно было управлять всеми перечисленными операциями.
Эксплуатация Флотационных установок, работа которых основана на сложных физико-химическнх явлениях, связана с постоянным наблюдением за процессом, что требует специальнои подготовки и высокой квалификацин эксплуатационного персонала.

Отработка режима эксплуатации флотационных установок, уточнение всех технологических параметров, обеспечивающвх предусмотренный эффект очистки стоков, осуществляется в период пуско-наладочных работ.
Рекомендации по организации и проведению пуско-наладо чных работ относятся к напорным и электрофлотационным установкам, но в той нли иной степени могут быть использованы и при других способах флотации (безнапорная, химическая, пне вматическая, при подаче воздуха через пористые материалы)
Пускиналадка флотационных установок осуществляется в следующей последовательности (здесь не учтевы общепринятые работы, такие как сверка с проектом построенных сооружений, обкатка насосного и механического оборудов ания, проверка под нагрузкой электрохозяйства и т. п.).

1. Очищенная и рециркуляционная или рабочая жидкость равномерно распределяется по камерам флотации
2. При напорной флотации регулируется и устанавливаеткя расчетное давление в напорном баке и трубопроводах.

При электрофлотации и электрожоагуляции-флотации регулируются и устанавливаются расчетные параметры электрическо го тока.
3. При напорной флотации регулируется подача воздуха ; всасываюдиие патрубки насосов.

При электрофпотации и электрокоагулиин |;лотацни осуществляется наблюдение за работой электродноэ, сюстемы, в результане чего:
а) оценивается достаточность количества выделяюцегося газа н катионов металла и произюодится подрегулировка электрических параметров по этим показателям;
6) устананливается графнк корректировки электрических параметров по часам суток в связи с колебаннями качества поступающей на очистку сточной жидкости;
в) определяется оптимальная частота ияменения полярности электродов;
г) определяется динамика и состав отложений на этектродах, их влияние на измененне электрических параметров и качество очнстки стоков, разрабатывается график вывода злектродных бтоков на промывку и очистку от отложений.
4. Проверяется равномерность распреде.тения шлама по по верхности флотокамер, и при необходнмости в работу включаются дополнительные трубопроводы или электродные системы (см. рнс. 32,45).
5. Определяется периодичность сброса шлама
6. Отрабатываются операции по сбросу шлама с пюверхности камер.
7. Устанавливается периодичность и режим удаления осадка. 8. Определяется эффективность работь флотацнонной установКи.
9. При отклонении фактического эффекта очистки стоков от проектного изменяются и корректируются основные технологнческие параметры (давление насосов, подача воздуха, рециркуляционное отношение) для установления оптимального режима работы.
10. Уточняются после выведения установки в нормальный режим параметры операций по удалению шлама и осадка.

Стоки по флотокамерам равномерно распределяются задвижками, которые должны быть установлены на всех видах трубо. проводов при входе их в каждую камеру.

Регулирование давления в напорной линии и баке производит ся задвижкой или регулятором давления «до себя», устанавлива емых на общем напорном трубопроводе перед камерами.
Электрические параметры регулируются на основании показаний контрольно-измерительных приборов первоначально для наиоолее неблагоприятного периода работы установки (максимальный приток, наибольшая загрязненность, минимальная электропроводность жидкости)

Количество воздуха регулируется краном, установленным на воздушной трубке, подсоединенной к эжектору или непосредственно к всасывающему патрубку. Кроме того, подачу воздуха можно регулировать задвижкой или вентилем, установленным перед эжектором (изменяя напор перед эжектором).

工ля нормальной работы флотационной устанонкн колнчество Додсасынаеного воздуха должно соответствовать необходимому удепьному расходу его

При регутировании колнчества подаваемого воэдуха стедует устанонить максиматьную степень открытия воздушного крана зжектора, при которой нарушается или заметно ухудшается ра-
 рой заметно ухудшается процесс флотации

При установлении диапазона открытия воздушного крана стедует помнить, что ко.тичество подсасываемото воздуха зависит от уровня сточной жидкости в приемном резервуаре насосной стаиии Максимальная степень открытия воздушного крана уссанавлвается при минимальном уровне воды в резервуаре, а синихалная степень открытия воздушного крана при максиминимальная степень
мальном уровне воды.

Дальнейшее регулирование должно производиться в пределах установленного диалазона

Регулирование количества воздуха можно считать закопченным после того, как в прнемном отделенни флотащнонной камеры будет образовываться устойчивая водо-воздушная эмульсия и не будет происходить непрерывного выделения крулных пузырькоп воздуха; выделение пузырьков говорит о ненужном избытке воздуха, который может ухудшать процесс флотацни, созлая пробки в напорной линии, уменьшая объем воды в баке и пр.
Постаточюе количество выделяющегося электролитического
 жидкости. Главной задачей данного цикла наладки явпяется достиженне предусмотренного эффекта очистки при миниматьных затратах электроэнергии.

Для составления графика корректировки электрических параметров по часам суток необходимо вести постоянное наблюдение за изменением качества сточной жидкости по ее электропроводности или другим показателям, косвенно оценивающим электронроводность (pH кислотность, щеточность, общая минерализария) При ручном регулированни электрических параметров чисдия). При ручноя корректировок их не должно превышать двухтрех раз в смену

Частота изменения полярности электродов непосредственно связапа с динамикой образовання отложений на эпектродах и их пассивацией. Поэтому определять оптимальную частоту изменения полярности следует с установления продолжительности нормальной работы электродной системы без смены полярностей.
О нарушении нормальной работы электродной системы в связи с образованием отложений и пассивацией судят по увеличению напряжения и резкому падению силы тока.
Затем постепенно увеличивая частоту переключения полярностей необходимо найти такую частоту, дальнейшее увеличение

которой положитетьного влияния на продолжительность работы электродной снстемы не оказывает. Ориентировочно оптима.тьная частота переключений полярности находится в пределах 15-120 миж.

На основании полчченных даныы о продолжительности нормальной работы электродной системы при оптимальной частоте перектючений полярности составляют график вывода электродных блоков на промывку н очистку от оттожений и по составу отложений уточияют слособ восстановления поверхности электродов (промывка водой, кислотой, делочью, механическая очистка и т. д.).

Равномерность раслределения вппльвающего шлама по поверхности камер проверяют после окончания работ по регулировке давления и подсоса воздуха и включения флотационных камер в непрерывный режим работы.

Для определения равномерности распределения шлама по поверхности камер через 1 - 2 ғ после начала накопления шлама на поверхности камеры замеряют высоту стоя шлама по площади камеры стекдянной трубкой длнной 100 cm , градуированной в ся. К одному ее концу присоединяется резиновыи Штанг свобопный конец которого располагается ннже чровня воды во флотаторе. Опустив стекіянную трубку на глубину, заведомо большую высоты шлама, заряжают сифон и при медленном ее лоднимании определяют момент когда по трубке начнет идтн шлам. Отметив на трубке уровень шлама в этот момент, ее вынимают и чстанавливают высоту слоя шлама.

Замер шлама нужно производить в 3-4 точках ло длине или раднусу (первая точка на расстоянии 1,5-2 ж от приемной камеры, последняя - у борта шламоотводящего лотка). Если высота шлама в первой точке будет превосходить высоту шлама в конце камеры не более чем в два раза, распределенне шлама по поверхности камеры следует признать удовлетворительным. В этом случае включение дополннтельных напорных линий, подающих сток прямо в отстойную часть флотационных камер, нецелесообразно

Если же высота шлама в начале камеры более чем в 2 раза превосходит высоту шлама в конце, а тем более, если в конце имеется непокрытое шламом водное зеркало, что может иметь место при камерах длиной бопее 10 m , то в работу включаются дополнительные напорные линии, которые рассчитываются на подачу не более 20% расхода сточных вод.

В завнсимости от характера распределения шлама по длине камеры может быть включена одна или две дополнительные линии.

Нагружать дополнительные напорные линии следует постепенно, непрерывно наблюдая за качеством осветленной воды. Если после очередного увеличения подачи стока через дополнительные линин вынос взвешенных веществ увепичится, необходнмо убе-

диться, что зто влияет подла через допи_интельные линии (несколько раз уменьшив и вновь увелнчин расход по линиям) и после этого установить максимально допустимую степень открытия задвнжек на дополнительных напорных линиях.

Сброснв затем накопленный шлам, снова пронзвестн замер тотщины шлама по длине камеры, чтобы удостовериться в достаточно ранномерном распределении его по длине.

Установление наилучшего режима работы дополнительных напорных линий можно ускорить, создавая в каждой камере разние соотношение полачи сточных вод.

Периодичность сороса шлама указывается в проекте
Однако практически время накопления слоя шлама будет завнсеть от колебання взвешенных всществ в пределах суток и от колебания расхода сточных вод, пропускаемых через флотатор. Поэтому для удобства эксптуатацин следует установить график сороса шлама в конкретных условиях. Для этого необходимо в течение $10-15$ дней производить круглосуточный коитроль за приростом шлама, замеряя его высоту через каждый час и осуществляя сброс шлама по достижении им средней высоты, принятой в расчетах. Результатом работы должен явиться график показывающнй конкретное время начала операций по сбросу шлама в пределах суток (например, 1-й сброс - 8 н; 2-й - 10,30 3-и - 12,30 и т. д.).

При выполнении данных работ (а также работ предыдущего цикла наладки) необходнмо, кроме того, установить, какой максимальный слой шлама может быть накоплен и сброшен без уку дшения качества очистки как в пернод работы флотатора, так и в особенности, в период сброса шлама н работы скребков. В ре зультате этого должен быть подтвержден или уточнен принятый в проекте слой шлама, при достиженни которого начннается -сброс шлама, и график сброса определен уже исходя нз этой уточненной высоты слоя.

Отработка операций по сбросу шлама с поверхности фпотаци онных камер может быть начата уже при выполнении второго цикла наладочных работ.
В процессе отработки этой операции необходимо добиться, чтобы, во-первых, со сбрасываемым шламом уходило возможно меньшее количество воды (точнее, только то количество, которое необходимо для движения шлама самотеком по отводящим лоткам и трубам) и, во-вторых, чтобы при сбросе не происходило взмучивания, перемешивания шлама и ухудшения качества очищенной жидкости.
Для соблюдения укаэанных условий необходнмо, чтобы скорость движения скребков вдоль камеры при сбросе шлама была равна скорости движения шлама к борту шламоотводящего лот ка. Поскольку конструкция скребкового механизма не всегда предусматривает регулирование скорости движения скребков, то регулировать в процессе наладки придется скорость движения 126

шлама, т. е. количество питама, пегетивающегося через оор шламоотводящего тотка, или его уровень над вортом лотка
Таким образом, при отработке сброса шлама необходимо установить и зафиксировать оптнальный уровень шпама в камере при сбросе, т. е. уровень ретулируемото водослива на выходе осветленной воды из камеры флотация, а также его расход, т. е. степень открытия шибера в шламоотводящем лотке
Рабочие положения указанных регуляторов при сбросе штама необходимо установнть для трех случаев подачи стоков на флотацию, а именно: работа при максимальном, минимальном и среднем притоках сточных вод на флотацию.

Периодичность н режим сброса осадка через грязевые трубы устанавливается во время работы флатационных камер. Паско.ть ку часть нерастворенных веществ нензбежно будет оседать на дно (2-5\% от общего количества), то для их удаления преду смотрены грязевые трубы, сброс через которые выпавшего на дно осадка целесообразно производить при слое осадка в средней части камеры не менее $0,4-0,5 \mathrm{~m}$.

Во время наладки чстанавливается периодичность продувки флотационных камер. Для этого с начала эксплуатации камер наблюдают за приростом осадка, выпадающего на дно (за его уровнем). Эти наб́людения можно производить при помощи устройства, аналогичного описанному выше. Опуская в камеру традуированную трубку, соединенную с сифоном, можно доста точно точно (2-3 см) установить уровень стояния осадка в любой момент. Отбирая этой же трубкой пробы осадка, можио дать оценку его качества.

ЛИTEPATУРA
1．Березюк В．Г．，Никифоров А．Ф．，Пуиккарев В．В．и др．Очистка природ них и сточных вод пенной флотацией и сорбцнен твердымн сорбентами．Тези сы докладов I：сообщешнй Всесоюзной научно－техннческой конференцни Ровно， 1972 ．
2．Васидвев Г．В．Очистка сточны
енности．Легкая индустрня，1968，N1 8．
3．Всонесенскй С．А．，Середа Г．А．，Басков ．Т．И．，Тканекко Е．В．，Багре доя В．Ф．К вопросу о применении флоташин при очкстке радноактнвных сточ ных вод，кАтомная энергия»，т，9，вын，З， 1960.
4．волюова З．В．Закрепление частиц минерало
5．Гоуа при флотацин．ЖФХ，т．Хю，№ 5－6， 1940.
о электролнза ия сточных вот бузаголелате для члавливания волониа мето босзнака，выл，4，М．， 1964.
6．Герасимое H．$^{\text {．}}$ ．Очистка сточвых вод общего стока НПЗ лостоянным лектрическнм током с прнмененнем флотации．Труды уфимского нефтяного института．Вып．III， 1960

лембоцкии В．А．，Классен В．И．，Плаксин Н．Н．Флотация．М．，Гос ортехиадат， 1961

8．Годдн А．М．Флотация．М．，Госгортехиздат， 1959.

10 Гребкев Н．А．Аппарат для доочистки от смол и нефти способом флота
ни．Информацнонно－технический листок 刃о 18，Л．， 1957.
11．Гришина Е．Е．Опыты по анаэробной опистке сточных вод от мойки шер тя．«Гидротехника и мелиорация»， 1964 ，No 10 ．

13．дерясин в．В．，духин С．С．лисиченко В．А．Кинетика прилипачня ми неральных частид к пузырькам при флогации，ЖФХ，т．ХХХ111，No 10， 1959 и

14．Думанский А．В．Учение о коллондах．М．－－Л．，Госхимиздат， 1948
15．Жуков А．И．，Демидов Л．Г．，Монгаит И．Л．，Родзиялер И．Д．Каналн ацня промышленных предприятий．М．，Стройиздат， 1969.

Д．Д．Канализация промыш 17．Караваее И．Н．Флотационная очист
ромивочно－пропарочных станций．«Вестник ВНИИЖТ»， 1960 ，№ 6
18．Караваев И．И，реэник H．Ф．Флотанионная очистка сточных вод от нефтепродуктон．М．，ЦНИИТЭнефтехим， 1966
19．Карелин Я．А．，Жиков Д．Д．и др．Очистка производетвенных сточных 20．Строииздат， 1970
Горный журнал»，1948，№ 9
21．Классен В．И．Волросы теории аэрации и флотащии．М．－Л．，Госхимиз－ дат， 1949.

22．Когановский А．М．，Клименко Н．А．Фнзико－химические методы очнстк промыщленных сточных вод от поверхностно－актввных веществ．Киев，«Нау кова думка»， 1974.

128

 25．Кулакоя E．A．Сточные воды фабрик первнчнои обработки шерсти，нх очистка и извлеченне шерсэноястойнзпат， 19.99 ． ных сточных водя．Nö 2，M．，Госстройздая，
26．Ласков О．М．Кондратавицус B．Һ．Расхол и состав сточных вод ко－ жевеиных заводов．кКожевенно－обувная промышленность＊，1968．No 9

ащих сннтетнческие поверх－

очного активного ила．Научные труды АКХ，выни，I，М．，Мзд－во МКХ РСФСР 949.

29．Лукиных Н．А．Упдогнение активного ида методом флотации．Научные руды АКХ，вы1．ІІ－ІІІ，М，Изд－во МКХ РСФСР．1951．

30．Лурве Ю．Ю．，Аятипова Л．С．Очнстка сточних вод шерстомонных фаб
 ных．жилищное н коммунальное хоаяйсзвоз，1972，小о 9.
 33．Матоя Б．М Романчик H вани．＂Хнмнческне волокна»，1973，№ 4 ． ясокомбината М．，Романяцк Н．В．，Кречетов В．П．Осветленне сточных вод учно－техническая информация «Мясная н птицелерерабатывающая промьшлен ность»，вып．VI，ЦИНТИПКШЕПРОМ， 1967.
34．Матов Б．М．，Романкук И．В．Элекгрофлотацня жнра сточных вол мя сокомбината．Научно－техническан инфармаиия хияснан л лтицеперерабаты ваюшая промышленностья，выл．18，ЦИНТИПИЩЕПРОМ， 1967.
35．Мацнев А．Н．Очистка сточных вод вискозного производства методом лотацин．Новочеркасск．Редакцнонно－нзпательский отдел НПИ， 1961

36．Мацнев А．И．Флотация как метод очнстки сточных вод от поверхност о－актнвных веществ．Доклады XV научной копференции НПИ，Новочеркасск

37．Мацнев А．И．Опыты по очистке сточных вод завода синтетических про дуктов．Доклады ІІ научно－технической конференции по водоснабжению и ка－ нализация，Новочеркасск， 1966
38．Мсцнев А．Н．，Куликов Н．Н．Снижение концентрацин поверхностно－ак ивиых веществ при флотация．Доклады III научно－гехнической конференци по водоснабжению п канализации．Новочеркасся 1966
39．Мацнев А．И．，Синея，О．П．，Рогов В．М．，Поталенко П．П．Применение

40．Мацнев А．И．，Синея О．П．，Россинский Н．П．Об электролитической ре генерацин цннка из цинкосодержамих осадков сточных вод 《Химическне во локна»，1973，No 4.

41．Мачнев А．И．，Шкядреский И．Г．Фпотационное үплотнение осадков сточных вод．Сб．«Водоснабжение н каналияация»，вып．19．М．，ЦБНТИ МКХ СФСР， 1972.
42．Монгайт И．Л．Рацнональная схема очнстки сточных вод нефтеперера батывающнх эав
стройиддат， 1957.

43．Монаайт И．Л．Реэультаты нсследованнй по доодистке общего сток осковского нефтеперерабатывающего завода на олытной погупроизводствен ной установке．В кн．«Борьба с загрязнением водоемов»．М．，Гостолтехкздат，

44．Монгайт И．Л．，Родзидер Н．Д．Методы очистки сточных вод．М．，Гос топтехиздат， 1958

 47. Песенсон И. Б. Выделение жира из сточных вол путем отстаннания. До лады ХУІІ научиоы конференцни ЛІССИ. П., 1960
48. Лесенсон И. Б. Исследования влнянин добавления хлора к жиросодер

49. Песенсон h. $^{\text {. }}$. Исследования по очистке от дира и вэвешенных веществ сточинг вод мясокомбннатов флотациеф в производственных импелтерных ма нгнах *Санитарная техняка», краткле содержания докла,дов XXV научно конференции ЈІИСИ. Л.., 1967.
50. Пяенаков В. Д., Черньиев В. Н. Флотациоиний слособ очистки стои них вод от хрома. Сб,
г. 234 , Новочеркасск, 1971
5. Плешикоя B. П., Чернышев B. Н. О выпелении белка ия сточных воп кожевенного проияводства. Известия Северо-Қавказского научноғо центр высшей школы, серия «Техническне наукиж, № 2, Ростов-на-Дону, 1973.
52. Побегайло П. И., Бондарь А. А., Резник Н. Ф. Иеследование промьтш ленной флотационной установки для очистки сточных вод нефтеперерабаты вающеего заи

54. Ребиндер П. А. н др. Физнкохимия флотационных процессов. М.- Л

Металпургиадат. 1903
55. Резндк H. Ф. Очистка балтастных вод. *Водоснабжение и санитарная ехникая, 1965 , No 7 .
В. М., Мацнея А. И., Жикель Ю. А., Сикез О. П. Выбор схемь очнсти сточньх вод. Информационные материалы № 25. Л., Ленгнироволхоз,
1972. Рогоя В. М., Мацнея А. А., Синев О. П., Симановспая Н. Н. Расчет установок для электрокоагулягии флотацин. Информационные материаль Vo 25. T., Teигиироводхоз, 1972.
58. Ромя М. М. Адсорбқионные процессы в химической технологин. М., Госхнмиздат, 1951
59. Синея 0 П Иәнатенко A. $I I$. Интенсификация очистки сточных вол с использоваеием флотационной биокоагуляци. Тезисы докладов и сообшений Всесоюзной научно-технической конференцин фОхрана водных ресурсов от загряэнения и их рацнональное использование в иародном хозяйстве», Ровно,
1972. Синев О. Л., Иәнатенко А. П. Иэвлечение жиров из сточных вод мясокомбинатов методом электрокоагуляции-флотации. Тезисы докладов и сообщекнй Всесоюзной научно-техническои конференияи «охрана водных ресурсов от 9 агр
Ровго, 1972.
61. Скорделлетти В. В. Теоретическая электрохимия. Л., Госхимнздат, 1963.
62. Туровский И. С., Любарский В. М. Влиянне замораживания и оттаивания на своиства осадка сточных вод. «Водоснабжеиие н санитарная техника», 1970, 은․
63. Усьяров О. Г., Лаеров И. С., Ефремов И. Ф. О роли поляризационного взаимодействия в процессе электрофоретическога осаждения. «Колтоидный журнал».т. 28, $1966, \ldots 4$.

явлениях смачивания и прилилания пузырьков.
65. Тифрия С. М., Песенсон И. Б., Заббаров А. Н. Способы удаления из сточных вод рыбоконсервных предлриятий жира и взвешенных веществ. «Саннтарная техника». Сб. трудов ЛИСИ, 1971, ㅊo 69.
66. якимое Г. В. Очистка воды н сточной жидкости от радисантуыиых изоов. Изд-во MKX РСФСР, 1961
 ков Барнаульского завода искусственного и синтетического волокиа с приме

тута, т. 157, Новочеркасск, 1964
. дковлев С. В., Кондратаницус В. И. Исследованыя по очистке сточныу 69. Яковлев С. В., Ласков Ю. М. Очне и санитарная техникаж, 19н9, Кя 8 иромымиленности. м., Стройизат, 1972.
71. Boules W. Aood Engineering Vol. 31, N6, I959.
2. Bohnke B., Schweiz 2. Hydrol. H-31, У 2, 1969.
74. Chris H, Gotaas H. Scwage Works Journal. Vol 15, N $2,1943$.
7. Collins R., Burns R. C. Engineering News-Record. Vol. N6, N191, 1951
76. Dirasian H. A. Water and Wastes Engineering. Yol. $\overline{7}, \mathrm{~N} .5,1970$.
77. Edvards G. P, Kesavulh V.. Smith S. W. P. C. F. Vol. 33, N 7. 1961.
78. Eldib A. W. P' C. F. Vol. 33, N 9, 19GL.
79. Farrei L. S. Water and Sewage Works. Yol, 100, P. 17!, 1958,

Gaden E. L. Kevorkian V Chemical Envineering Yol 63 N, 1955.
Gaden E. L., Kevorkian V. Chemical Engineering. Vol. 63, N 10, 1956
Gricues R. B., Bewley S. L. W. P. C.F. Vol. 45, N 3, 1973.
Hess R. W. Sewage and Industrial Waews Vol. 25, N 6, 195
Hopper S. H. Mc Cowen M. C. Y. A. W. W. A. Yol. 44, N 8. 1952.
Jenks H. W. Engineering News-Record. Vol. $145, N 16,1950$.
7. Kaeding 1. Vom Wasser 1961, Bd. 28. Weinheim/Bergstr., 1962
88. Kaeding I. Wasserwirtsch Wassertechn. J. 12, N I, 19322.
89. Kalinske A. A. aBiologikal Treament of Sewage and Industrial Wastes*
ol. 2. Edited by Br. Joseph me Cabe C . F Eckenfelder, Jr. Rein
10. Katz W Corporation, $N-Y$, 1958
90. Katz W. J. Publik Works. Vol. 89, N 12, 1958
92. Katz W. J. Wastes Engineering. Vol. 30 N 7,1959
93. Katz W., J. Geinopolos A. W. P. C. F. Vol. 39, N $6,1967$.

Klein S. A., Mc Gauhey P. H. W. P. C. F. Vol. 35, N I, 1963.
 Logan R. P. Sewage Warks Journal. Vo., XXI, N $5,1949$.
99. Mays T. J. Sewage and Industrial Wastes, Vol. 25, N 10, 1953
100. Mc Carty P. L. W. P. C. F. Vol. 38, N 4, 1966.
101. Mc Gauhey P. H., Klein S. A. Sewage and Industrial Wastes. Vol. 31, p. 877, 1959.
102. Prather B. V. Petroleuml Refiner. Vol. 40, N 5, 1961.
103. Rohlich G. A. Industria. and Engineering Chemistry. Vol. 46, N 2, 1954
105. Schrocder H., Lieven-Gollnitz L. Monthly Techn. Rev. H-5, N 3, 1961
106. Sessler R. E. Sewage and Industrial Wastes. Vol. 97 , N- 10, 1955 .
107. Simons G. E. Water and Sewage Works, Referens and Data. R-161
1948.
108. Stone A. R. Journal and Proc. Inst. Sewage Purification. N 5, 1962.
109. Supera A., Przutulski S. Przeglad skorzany. N 5, 1971.
10. Talley W. I. Eifluent and Water Treatment Journal. Vol. 12, N 1,1972
112. Weismantel G. E. Chemiral Engineering. Vol. 78, I956. 1071, 113
113. White R. L., Gole T. Gi Ppbisk Works. Vol. 104, N 2 , 1973 .
114. Wolner H. J., Kumn V. M., Kauh P. A. Sewage and Industrial Wastes

Vol. 26, N 4, 1954.
10578

ОГЛАВЛЕНИЕ
Введенза
Физико-хиннческие основы флотационяого процесса
Методы флотационной обработки сточньгх вод
ассификация стособов флотаинонной обработки
Класснфикация способов флотацноннои оорарот
Флоташия с выделением воздуха яз раствора
Флотация с выделением воздуха яз
Флотация с механическим диспергиронанием воздуха
Флотаиия с механическнм диа перез пористые материа.ты
электрофлотация
Биологкческая и хнмическая флотации
Очистка флотацней некоторых категорий слочных вод
Городские сточные воды
точные волы содержащие нефть и нефтепродукты
Сточные воды вискозного производства
Сточныје воды кожсвенных заводов
Сточные воды меховых фабрик
точные воды фабрик искусственных технических кож
Сочные воды мясокомбинатов
сочные воды фабрик первичной обработки шеретн

Флотаиионное уплотнение осадков сточных вод

установок
Литература

Ажатолий Нванович Мацнев
ОЧИСТКА СТОЧНЫХ ВОД ФЛОТАLИЕИ

Техннческни редактор з. П. Золотарева
корректор Γ. А. Белицкая

[^0]: M $\frac{30210-605}{\text { M203(04)-76 }} 89-7$

